YAN Yu-tao, QIAN Xiao-lin, ZHANG Yi-bo, SUN Zhi-li. Analysis on Crack Tip J Integral Value Under Sliding Contact Effect[J]. Journal of Northeastern University Natural Science, 2016, 37(12): 1744-1749.
[1]Sosnovskiy L A.Tribo-fatigue:wear-fatigue damage and its prediction[M].Berlin:Springer,2005:119-145. [2]张斌,郭万林.考虑闭合效应和三维应力约束的表面裂纹扩展模拟[J].计算力学学报,2005,22(6):716-721.(Zhang Bin,Guo Wan-lin.Numerical simulation of surface crack propagation considering the crack closure effects and the three-dimensional stress constraints[J].Chinese Journal of Computational Mechanics,2005,22(6):716-721.) [3]Lin X B,Smith R A.Finite element modeling of fatigue crack growth of surface cracked plates.Part Ⅰ:the numerical technique[J].Engineering Fracture Mechanics,1999,63(5):503-522. [4]Lin X B,Smith R A.Finite element modeling of fatigue crack growth of surface cracked plates.Part Ⅱ:crack shape change[J].Engineering Fracture Mechanics,1999,63(5):523-540. [5]Lin X B,Smith R A.Finite element modeling of fatigue crack growth of surface cracked plates.Part Ⅲ:stress intensity factor and fatigue crack growth life[J].Engineering Fracture Mechanics,1999,63(5):541-556. [6]Dai D N,Hills D A,Nowell D.Modelling of growth of three-dimensional cracks by a continuous distribution of dislocation loops [J].Computational Mechanics,1997,19 (6):538-544. [7]Hwang C G,Ingraffea A R.Shape prediction and stability analysis of mode-Ⅰ planar cracks [J].Engineering Fracture Mechanics,2004,71(12):1751-1777. [8]Daniewicz S R.A modified strip-yield model for prediction of plasticity-induced in surface flaws[J].Fatigue & Fracture of Engineering Materials & Structures,1998,21(7):885-901. [9]Kim J H,Lee S B.Prediction of crack opening stress for part-through cracks and its verification using a modified strip-yield model [J].Engineering Fracture Mechanics,2000,66(1):1-14. [10]薛玉君,程先华,黄文振.断裂力学和有限元法在疲劳磨损研究中的应用[J].机械强度,2001,23(3):365-368.(Xue Yu-jun,Cheng Xian-hua,Huang Wen-zhen.Applications of fracture mechanics and finite element method in fatigue wear[J].Journal of Mechanical Strength,2001,23(3):365-368.) [11]Abdelbary A,Abouelwafa M N,Fahham I M E,et al.The influence of surface crack on the wear behavior of polyamide 66 under dry sliding condition [J].Wear,2011,271(9/10):2234-2241. [12]Benuzzi D,Bormetti E,Donzella G.Stress intensity factor range and propagation mode of surface cracks under rolling-sliding contact [J].Theoretical and Applied Fracture Mechanics,2003,40(1):55-74. [13]王文健,郭俊,刘启跃,等.磨损对钢轨滚动接触疲劳损伤的影响[J].机械工程材料,2010,34(1):17-19,23.(Wang Wen-jian,Guo Jun,Liu Qi-yue,et al.Effect of wear on rolling contact fatigue of rail[J].Materials for Mechanical Engineering,2010,34(1):17-19,23.) [14]赵荣国,罗希延,任璐璐,等.航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展行为研究[J].机械工程学报,2011,47(18):55-65.(Zhao Rong-guo,Luo Xi-yan,Ren Lu-lu,et al.Research on fatigue crack propagation behavior of GH4133B superalloy used in turbine disk of aero-engine[J].Journal of Mechanical Engineering,2011,47(18):55-65.) [15]程靳,赵树山.断裂力学[M].北京:科学出版社,2006.(Cheng Jin,Zhao Shu-shan.Fracture mechanics[M].Beijing:Science Press,2006.)(上接第1743页)3结论1) 椰壳活性炭在经过950℃的高温改性后,比表面积由918m2/g提升至2544m2/g;同时,表面孔径分布得到优化,孔含量大幅增加,其中以7~10nm的中孔为主,并具有去除活性炭表面杂质的作用.2) 高温改性前后的椰壳活性炭的表面官能团种类没有发生变化,表明高温改性后椰壳活性炭的结构没有发生变化,所以能够在铝电解质熔盐中维持稳定的内部结构.3) 吸附实验表明,椰壳活性炭对熔盐中的K+具有一定的吸附能力,在吸附时间达到35min时,吸附达到平衡,所得K+最大吸附量为20.8mg/g.通过对吸附过程实验数据的分析计算,可以确定椰壳活性炭在铝电解质熔盐中吸附K+的吸附动力学过程符合准二级动力学模型,吸附过程可在短时间内达到平衡.