BA Yao-shuai, BA De-chun. (Nd0.62Li0.15)TiO3 Ceramics Preparation and Thermoelectric Property Characterization[J]. Journal of Northeastern University Natural Science, 2019, 40(10): 1403-1407.
[1]李洪涛,朱志秀,吴益文,等.热电材料的应用和研究进展[J].材料导报,2012,26(8):57-61.(Li Hong-tao,Zhu Zhi-xiu,Wu Yi-wen,et al.Progress of application and research of thermoelectric materials [J].Materials Review,2012,26(8):57-61.) [2]Snyder G J,Toberer E S.Complex thermoelectric materials [J].Nature Materials,2008,7(2):105-114. [3]Dresselhaus M S,Chen G,Tang M,et al.New directions for low-dimensional thermoelectric materials [J].Advanced Materials,2007,19(8):1043-1053. [4]Kim W,Wang R,Majumdar A.Nanostructuring expands thermal limits [J].Nano Today,2007,2(1):40-47. [5]Lan Y,Minnich A J,Chen G,et al. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach [J].Advanced Functional Materials,2009,20(3):357-376. [6]Pichanusakorn P,Bandaru P.Nanostructured thermoelectrics [J].Materials Science and Engineering,2010,67(2/3/4):19-63. [7]Bux S K,Fleurial J P,Kaner R B.Nanostructured materials for thermoelectric applications [J].Chemical Communications,2010,46(44):8311-8324. [8]Szczech J R,Higgins J M,Jin S.Enhancement of the thermoelectric properties in nanoscale and nanostructured materials [J].Journal of Materials Chemistry,2011,21(12):4037-4055. [9]Touzelbaev M N,Zhou P,Venkatasubramanian R,et al.Thermal characterization of Bi2Te3/Sb2Te3superlattices [J].Journal of Applied Physics,2001,90(2):763-767. [10]Caylor J C,Coonley K,Stuart J,et al.Enhanced thermo-electric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity [J].Applied Physics Letters,2005,87(2):023105. [11]Beyer H,Nurnusa J,Bottnera H,et al.High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity [J].Physica E,2002,13(2):965-968. [12]Ohta H,Kim S,Mune Y,et al.Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3 [J].Nature Materials,2007,6(2)129-134. [13]Robertson A D,Martin S G,Coats A,et al.Phase diagrams and crystal chemistry in the Li+ion conducting perovskites,Li0.5-3○xRE0.5+○xTiO3:RE=La,Nd [J].Journal of Materials Chemistry,1995,5(5):1405-1412. [14]Skakle J M S,Mather G C,Morales M,et al.Crystal structure of the Li+ion-conducting phases,Li0.5-3○xRE0.5+xTiO3:RE=Pr,Nd,x=0.05 [J].Journal of Materials Chemistry,1995,5(11):1807-1808. [15]García-Martin S,García-Alvarado F,Robertson A D,et al.Microstructural study of the Li+ion substituted perovskites Li0.5-3○xNd0.5+○x○TiO3 [J].Journal of Solid State Chemistry,1997,128:97-101. [16]Guiton B S,Davies P K.Nano-chessboard superlattices formed by spontaneous phase separation in oxides [J].Nature Materials,2007,6(8):586-591. [17]Erni R,Abakumov A,Rossell M D,et al.Nanoscale phase separation in perovskites revisited [J].Nature Materials,2014,13(3):216-217. [18]Zhu Y,Withers R L,Bourgeois L,et al.Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites [J].Nature Materials,2015,14(11):1142-1149. [19]Lee J,Yoo K,Kim T,et al.Evaluation of the AC response of Li-electrolytic perovskites Li0.5(Ln○xLa0.5-○x)TiO3(Ln=Nd,Gd)in conjunction with their crystallographic and micro-structural characteristics [J].Solid State Ionics,1997,98(1):15-26. [20]Ba Y,Wan C,Wang Y,et al.Glass-like thermal conductivity of Nd2/3-○xLi3○xTiO3 bulk ceramics with nanochessboard superlattice structure [J].Materials Letters,2013,97:191-194. [21]Itoh M,Inaguma Y,Jung W,et al.High lithium ion conductivity in the perovskite-type compounds Ln0.5Li0.5TiO3(Ln=La,Pr,Nd,Sm)[J].Solid State Ionics,1994,70/71:203-207. [22]Wang Y,Lee K H,Ohta H,et al.Thermoelectric properties of electron doped SrO(SrTiO3)○n(n=1,2)ceramics [J].Journal of Applied Physics,2009,105(10):103701. [23]Lee K H,Kim S W,Ohta H,et al.Ruddlesden-Popper phases as thermoelectric oxides(Nb-doped SrO(SrTiO3)○n(n=1,2))[J].Journal of Applied Physics,2006,100(6):063717.