CHEN Jian, HE Tao, WEN Ying-you, MA Lin-tao. Entity Recognition Method for Judicial Documents Based on BERT Model[J]. Journal of Northeastern University Natural Science, 2020, 41(10): 1382-1387.
[1]Sundar N G,Sunny A T.An efficient information extraction model for personal named entity[J].International Journal of Computer Trends & Technology,2013,4(3):119-128. [2]Li D,Huang L,Ji H,et al.Biomedical event extraction based on knowledge-driven tree-LSTM[C]//Proceedings of NAACL- HLT 2019.Minneapolis,2019:1421-1430. [3]甘丽新,万常选,刘德喜,等.基于句法语义特征的中文实体关系抽[J].计算机研究与发展,2016,53(2):284-302.(Gan Li-xin,Wan Chang-xuan,Liu De-xi,et al.Extraction of Chinese entity relations based on syntactic and semantic features[J].Journal of Computer Research and Development,2016,53(2):284-302.) [4]Nikoulina V,Sandor A,Dymetman M.Hybrid adaptation of named entity recognition systems for statistical machine translation purposes[J].Journal of Radiation Research,2011,53(2):1-16. [5]王鑫,邹磊,王朝坤,等.知识图谱数据管理研究综述[J].软件学报,2019,30(7):2139-2174.(Wang Xin,Zou Lei,Wang Chao-kun,et al.A survey of knowledge map data management[J].Journal of Software,2019,30(7):2139-2174.) [6]俞鸿魁,张华平,刘群,等.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94.(Yu Hong-kui,Zhang Hua-ping,Liu Qun,et al.Chinese named entity recognition based on cascading hidden Markov model[J].Journal on Communications,2006,27(2):87-94.) [7]McCallum A,Freitag D,Pereira F C N.Maximum entropy Markov models for information extraction and segmentation[C]//Proceedings of the Seventeenth International Conference on Machine Learning.Sydney,2000:591-598. [8]周俊生,戴新宇,尹存燕,等.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5) :804-809.(Zhou Jun-sheng,Dai Xin-yu,Yin Cun-yan,et al.Automatic recognition of Chinese organization name based on cascading conditional random field model[J].Acta Electronica Sinica,2006,34(5):804-809.) [9]Ertekin S,Bottou L.Nonconvex online support vector machines[J].Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):368-381. [10]Feng Y H,Hong Y U,Sun G,et al.Named entity recognition method based on BLSTM[J].Computer Science,2018,45(2):261-268. [11]Dong C,Zhang J,Zong C,et al.Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]//Natural Language Processing and Chinese Computing 2016.Kunming,2016:239-250. [12]Ma X,Hovy E.End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.Berlin,2016:1064-1074. [13]Strubell E,Verga P,Belanger D,et al.Fast and accurate entity recognition with iterated dilated convolutions[C]//Conference on Empirical Methods in Natural Language Processing.Copenhagen,2017:2670-2680. [14]Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York,2017:6000-6010. [15]Zhang Y,Yang J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg,2018:1554-1564. [16]Yang Y S,Zhang M S,Chen W L,et al.Adversarial learning for Chinese NER from crowd annotations[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence.New Orleans,2018:3216-3222. [17]Devlin J,Chang M W,Lee K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the Association for Computational Linguistics.Stroudsburg,2019:4171-4186. [18]Matthew E P,Mark N,Mohit I,et al.Deep contextualized word representations[C]//Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics.New Orleans,2018:3253-3268. [19]Bengio Y,Lamblin P,Popovici D,et al.Greedy layer-wise training of deep network[J].Advances in Neural Information Processing System,2007,6(19):153-162. [20]Li J Q,Zhao S H,Yang J J.WCP-RNN:a novel RNN-based approach for Bio-NER in Chinese EMRs[J].Journal of Supercomputing,2018,1(16):1-18. [15]关守平,房少纯.一种新型的区间-粒子群优化算法[J].东北大学学报(自然科学版),2012,33(10):1381-1384.(Guan Shou-ping,Fang Shao-chun.A new interval particle swarm optimization algorithm[J].Journal of Northeastern University(Natural Science),2012,33(10):1381-1384.)