Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (5): 62-70.DOI: 10.12068/j.issn.1005-3026.2025.20230300
• Mechanical Engineering • Previous Articles Next Articles
Heng-fa LUO, Tian-zhuang YU, Shi-hua ZHOU()
Received:
2023-11-01
Online:
2025-05-15
Published:
2025-08-07
Contact:
Shi-hua ZHOU
CLC Number:
Heng-fa LUO, Tian-zhuang YU, Shi-hua ZHOU. A Fault Diagnosis Method of Rolling Bearings Based on GRM-IConvNeXt Model[J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 62-70.
标签 | 故障类型 | 损伤尺寸 | 训练 样本 | 测试样本 |
---|---|---|---|---|
mm | ||||
0 | 无故障(N) | 0 | 400 | 100 |
1 | 内圈故障(IR) | 0.177 8 | 400 | 100 |
2 | 内圈故障(IR) | 0.355 6 | 400 | 100 |
3 | 内圈故障(IR) | 0.533 4 | 400 | 100 |
4 | 滚动体故障(BR) | 0.177 8 | 400 | 100 |
5 | 滚动体故障(BR) | 0.355 6 | 400 | 100 |
6 | 滚动体故障(BR) | 0.533 4 | 400 | 100 |
7 | 外圈故障(OR) | 0.177 8 | 400 | 100 |
8 | 外圈故障(OR) | 0.355 6 | 400 | 100 |
9 | 外圈故障(OR) | 0.533 4 | 400 | 100 |
Table1 Data set status of ten CWRU fault categories
标签 | 故障类型 | 损伤尺寸 | 训练 样本 | 测试样本 |
---|---|---|---|---|
mm | ||||
0 | 无故障(N) | 0 | 400 | 100 |
1 | 内圈故障(IR) | 0.177 8 | 400 | 100 |
2 | 内圈故障(IR) | 0.355 6 | 400 | 100 |
3 | 内圈故障(IR) | 0.533 4 | 400 | 100 |
4 | 滚动体故障(BR) | 0.177 8 | 400 | 100 |
5 | 滚动体故障(BR) | 0.355 6 | 400 | 100 |
6 | 滚动体故障(BR) | 0.533 4 | 400 | 100 |
7 | 外圈故障(OR) | 0.177 8 | 400 | 100 |
8 | 外圈故障(OR) | 0.355 6 | 400 | 100 |
9 | 外圈故障(OR) | 0.533 4 | 400 | 100 |
网络 | 准确率/% | 方差 |
---|---|---|
GRM+IConvNeXt GRM+ConvNeXt GRM+ResNet | 100 97.55 95.62 | 0.004 2 0.098 7 0.206 2 |
GRM+MobileNet | 92.46 | 0.586 4 |
Table 2 Comparison of accuracy
网络 | 准确率/% | 方差 |
---|---|---|
GRM+IConvNeXt GRM+ConvNeXt GRM+ResNet | 100 97.55 95.62 | 0.004 2 0.098 7 0.206 2 |
GRM+MobileNet | 92.46 | 0.586 4 |
参数 | 数值 |
---|---|
内圈直径di/mm 外圈直径do/mm | 25 52 |
滚动体直径d/mm | 8 |
滚动体数目Z | 12 |
轴承节圆直径Dm/mm | 39.5 |
轴承宽度/mm | 15 |
接触角/(°) 滚动体有效长度lw/mm | 0 10 |
Table 3 Rolling bearing structure parameters
参数 | 数值 |
---|---|
内圈直径di/mm 外圈直径do/mm | 25 52 |
滚动体直径d/mm | 8 |
滚动体数目Z | 12 |
轴承节圆直径Dm/mm | 39.5 |
轴承宽度/mm | 15 |
接触角/(°) 滚动体有效长度lw/mm | 0 10 |
标签 | 故障类型 | 训练样本 | 测试样本 |
---|---|---|---|
0 | N | 800 | 200 |
1 | IR | 800 | 200 |
2 | OR | 800 | 200 |
3 | BR | 800 | 200 |
4 | OBR | 800 | 200 |
Table 4 Five kinds of fault data sets of the test bench
标签 | 故障类型 | 训练样本 | 测试样本 |
---|---|---|---|
0 | N | 800 | 200 |
1 | IR | 800 | 200 |
2 | OR | 800 | 200 |
3 | BR | 800 | 200 |
4 | OBR | 800 | 200 |
[1] | 刘磊, 李舜酩, 陆建涛. 基于卷积神经网络的旋转传动部件故障诊断综述[J]. 机械设计, 2022, 39(10): 1-8. |
Liu Lei, Li Shun-ming, Lu Jian-tao. Overview of fault diagnosis of rotary transmission parts based on convolution neural network[J]. Mechanical Design, 2022, 39(10): 1-8. | |
[2] | Guo S, Yang T, Gao W, et al. A novel fault diagnosis method for rotating machinery based on a convolutional neural network[J]. Sensors, 2018, 18(5): 1429-1445. |
[3] | 杨建华, 韩帅, 张帅,等. 强噪声背景下滚动轴承微弱故障特征信号的经验模态分解[J]. 振动工程学报, 2020, 33(3): 582-589. |
Yang Jian-hua, Han Shuai, Zhang Shuai, et al. Empirical mode decomposition of weak fault characteristic signal of rolling bearing under strong noise background[J]. Acta Vibration Engineering, 2020, 33(3): 582-589. | |
[4] | 贾亚飞, 朱永利, 王刘旺. 基于VMD和Wigner-Ville分布的局放信号时频分析[J]. 系统仿真学报, 2018, 30(2): 569-578. |
Jia Ya-fei, Zhu Yong-li, Wang Liu-wang. Time-frequency analysis of partial discharge signal based on VMD and Wigner-Ville distribution[J]. Journal of System Simulation, 2018, 30(2): 569-578. | |
[5] | 尹爱军, 李海珠, 李江, 等. Wigner-Ville分布复小波相似性评价及应用[J]. 振动测试与诊断, 2020, 40(1): 7-11. |
Yin Ai-jun, Li Hai-zhu, Li Jiang, et al. Similarity evaluation and application of complex wavelet of Wigner-Ville distribution[J]. Vibration Test and Diagnosis, 2020, 40(1): 7-11. | |
[6] | Wu C X, Chen T F, Jiang R, et al. A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault[J]. Journal of Intelligent Manufacturing, 2017, 28(8): 1847-1858. |
[7] | Wang H, Liu Z L, Peng D D, et al. Understanding and learning discriminant features based on multi-attention 1DCNN for wheelset bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5735-5745. |
[8] | Guo Q W, Li Y B, Song Y, et al. Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2044-2053. |
[9] | Kaya Y, Kuncan F, Ertunc H M. A new automatic bearing fault size diagnosis using time-frequency images of CWT and deep transfer learning methods[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2022, 30(5): 1851-1867. |
[10] | Liu X P, Xia L J, Shi J, et al. A fault diagnosis method of rolling bearing based on improved recurrence plot and convolutional neural network [J]. IEEE Sensors Journal, 2023, 23(10): 10767-10775. |
[11] | He K, Xu Y, Wang Y, et al. Intelligent diagnosis of rolling bearings fault based on multisignal fusion and MTF-ResNet[J]. Sensors, 2023, 23(14): 62-81. |
[12] | Liu Z, Mao H, Wu C Y, et al. A ConvNet for the 2020s[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans, 2022: 11976-11986. |
[13] | Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100-131. |
[14] | 任朝晖, 于天壮, 丁东, 等. 基于VMD-DBN的滚动轴承故障诊断方法[J]. 东北大学学报(自然科学版), 2021, 42(8): 1-6. |
Ren Zhao-hui, Yu Tian-zhuang, Ding Dong, et al. Fault diagnosis method of rolling bearing based on VMD-DBN[J]. Journal of Northeastern University( Natural Science), 2021, 42 (8): 1-6. | |
[15] | Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks [C]// 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, 2017: 1492-1500. |
[16] | Chen Y H, Yange T J, Emer J S, et al. Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 292-308. |
[1] | Bin YU, Hong-chun SUN, Da-yong YE. Intelligent Fault Diagnosis Under Variable Loads Based on the Embedded Gear Fault Mechanism [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 61-70. |
[2] | Na WANG, Yue-lei CUI, Liang LUO, Zi-cong WANG. Fault Diagnosis Method for Rolling Bearings Based on WP-TRP [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 20-27. |
[3] | Hong-wei WANG, Lei LI, Chen-yu LIU, Xun WANG. Steering Actuator Fault Diagnosis of Intelligent Vehicle Based on Variable Parameter Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 913-920. |
[4] | Yu-chuan FAN, Bo FAN, Zhuo CHEN, Xiao-shun ZHANG. A Method for Anomaly Detection and Fault Diagnosis of Elevator Door Machine [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 761-768. |
[5] | Zhi-jin ZHANG, He LI, Yu-shi HUANG, Wen-xue WANG. Application of Deep Residual Shrinkage Network in Rolling Bearing Fault Diagnosis [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1587-1594. |
[6] | WANG Hong-wei, ZHANG Hao-tian, HAN Jie, LIU Chen-yu. Sensor Fault Estimation of Uncertain Vehicle Electronic Stability Control System [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 1-8. |
[7] | WANG Na, LI Yang, PENG Kun. Method of Actuator Fault Diagnosis via Multiple Angles Feature Extraction [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1240-1249. |
[8] | HOU Dong-xiao, MU Jin-tao, FANG Cheng, SHI Pei-ming. Fault Diagnosis of Variable Speed Bearings Based on GADF and ResNet34 Introduced Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 383-389. |
[9] | REN Zhao-hui, YU Tian-zhuang, DING Dong, ZHOU Shi-hua. Fault Diagnosis Method of Rolling Bearing Based on VMD-DBN [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1105-1110. |
[10] | LUO Zhong, XU Di, LI Lei, MA Hui. Bearing Fault Detection Based on Improved CYCBD Method [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 673-678. |
[11] | WANG Xin-gang, WANG Chao, HAN Kai-zhong. Early Fault Diagnosis Method of Rolling Bearings Based on Optimization of VMD and MCKD [J]. Journal of Northeastern University(Natural Science), 2021, 42(3): 373-381. |
[12] | ZHANG Yong-chao, LI Qi, REN Zhao-hui, ZHOU Shi-hua. Cross-Domain Fault Diagnosis of Rolling Bearings Using Domain Adaptation with Classifier Discrepancy [J]. Journal of Northeastern University(Natural Science), 2021, 42(3): 367-372. |
[13] | MA Hui, LI Hong-fei, YU Kun, ZENG Jin. Dynamic Modeling and Vibration Analysis of Rolling Bearings with Local Fault [J]. Journal of Northeastern University Natural Science, 2020, 41(3): 343-348. |
[14] | LI Guo-jun, LI Yi-qing, QIU Yong. Modeling and Analysing Leakage of Heating Pipe Network in Park [J]. Journal of Northeastern University Natural Science, 2020, 41(10): 1402-1409. |
[15] | YIN Ming-ang, WANG Yu-shuo, SUN Zhi-li, GUO Bing. Parameter Estimation of the Cumulative Logistic Regression Model Based on the Newton Iteration Method [J]. Journal of Northeastern University Natural Science, 2020, 41(1): 79-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||