Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (5): 95-102.DOI: 10.12068/j.issn.1005-3026.2025.20239070
• Mechanical Engineering • Previous Articles Next Articles
Qing-dong WANG1(), Yu ZHANG2, Yong-jian LI1, Li-xin GUO3
Received:
2023-11-27
Online:
2025-05-15
Published:
2025-08-07
Contact:
Qing-dong WANG
Supported by:
CLC Number:
Qing-dong WANG, Yu ZHANG, Yong-jian LI, Li-xin GUO. Effect of Osteoporosis on Vibration Characteristics of the Fused Lumbar Spine[J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 95-102.
结构 | 单元类型 | 弹性模量/MPa | 泊松比 | 密度/(mg·mm-3) |
---|---|---|---|---|
松质骨 | C3D4 | 健康:100;骨质疏松:34(减少66%) | 0.2 | 健康:1.1;骨质疏松:0.37(减少66%) |
皮质骨 | C3D8 | 健康:12 000;骨质疏松:8 040(减少33%) | 0.3 | 健康:1.7;骨质疏松:1.14(减少66%) |
Table 1 Material properties of the models
结构 | 单元类型 | 弹性模量/MPa | 泊松比 | 密度/(mg·mm-3) |
---|---|---|---|---|
松质骨 | C3D4 | 健康:100;骨质疏松:34(减少66%) | 0.2 | 健康:1.1;骨质疏松:0.37(减少66%) |
皮质骨 | C3D8 | 健康:12 000;骨质疏松:8 040(减少33%) | 0.3 | 健康:1.7;骨质疏松:1.14(减少66%) |
[1] | 王庆东, 郭立新, 张驰, 等. 不同椎间融合方法对腰椎动态特性的影响[J].东北大学学报(自然科学版), 2022, 43(1): 76-82. |
Wang Qing-dong, Guo Li-xin, Zhang Chi, et al. Effects of different interbody fusion methods on dynamic characteristics of lumbar spines[J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 76-82. | |
[2] | Cummings S R. Melton (L J. Epidemiology) and outcomes of osteoporotic fractures[J]. Lancet, 2002, 359:1761-1767. |
[3] | Qiao N, Villemure I, Wang Z, et al. Optimization of S2-alar-iliac screw (S2AI) fixation in adult spine deformity using a comprehensive genetic algorithm and finite element model personalized to patient geometry and bone mechanical properties[J]. Spine Deformity, 2024, 12: 595-602. |
[4] | Cook S D, Salkeld S L, Stanley T, et al. Biomechanical study of pedicle screw fixation in severely osteoporotic bone[J]. Spine Journal, 2004, 4: 402-408.. |
[5] | Brier-Jones J E, Palmer D K, Inceoglu S, et al. Vertebral body fractures after transpsoas interbody fusion procedures[J]. Spine Journal, 2011,11:1068-1072. |
[6] | Fan W, Zhang C, Zhang D X, et al. Biomechanical comparison of the influence of osteoporosis on the lumbar spine after lumbar interbody fusion surgery or non-fusion dynamic stabilization surgery under whole body vibration[J]. Innovation and Research in BioMedical Engineering, 2023,44(5): 100797. |
[7] | Wade K R, Schollum M L, Robertson P A, et al. Vibration really does disrupt the disc-a microanatomical investigation[J]. Spine, 2016, 41 (15):1185-1198. |
[8] | Bovenzi M, Hulshof C T J. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain[J]. Journal of Sound and Vibration, 1998,215 (4): 595–611. |
[9] | Wilke H J, Kaiser D, Volkheimer D, et al. A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions[J]. European Spine Journal, 2016, 25(9): 2919-2928. |
[10] | 李武杰, 郭立新. 不同姿势对脊椎胸腰节段爆裂骨折的影响[J]. 东北大学学报(自然科学版), 2020, 41(4):534-540. |
Li Wu-jie, Guo Li-xin. Effect of different postures on burst fracture of thoracolumbar segment[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 534-540. | |
[11] | Cheung K M C, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals[J]. Spine, 2009, 34(9):934-940. |
[12] | Su X L, Shen H, Shi W D, et al. Dynamic characteristics of osteoporotic lumbar spine under vertical vibration after cement augmentation[J]. American Journal of Translational Research, 2017,9: 4036-4045. |
[13] | Patwardhan A G, Havey R M, Meade K P, et al. A follower load increases the load-carrying capacity of the lumbar spine in compression[J]. Spine, 1999, 24(10): 1003-1009. |
[14] | Dickerson D A, Sander E A, Nauman E A. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects[J]. Biomechanics & Modeling in Mechanobiology, 2008, 7(3):191-202. |
[15] | Shirazi-Adl A, Parnianpour M. Role of posture in mechanics of the lumbar spine in compression[J]. Journal of Spinal Disorders, 1996, 9(4):277-286. |
[16] | Drain O, Lenoir T, Dauzac C, et al. Influence of disc height on outcome of posterolateral fusion[J]. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur, 2008, 94(5): 472-480. |
[17] | Zhang L C, Yang G J, Wu L J, et al. The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation[J]. Clinical Biomechanics, 2010,25:166-172. |
[18] | Ghasemi A A. Adjacent segment degeneration after posterior lumbar fusion: an analysis of possible risk factors[J]. Clinical Neurology and Neurosurgery, 2016,143:15-18. |
[19] | Jung J M, Chung C K, Kim C H, et al. Clinical and radiologic outcomes of single-level direct lateral lumbar interbody fusion in patients with osteopenia[J]. Journal of Clinical Neuroscience, 2019,64:180-186. |
[20] | Zhang M Z, Pu F, Xu L Q, et al. Long-term effects of placing one or two cages in instrumented posterior lumbar interbody fusion[J]. International Orthopaedics, 2016,6: 1239-1246. |
[21] | Cunningham B W, Setter J C, Shono Y, et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs[J]. Spine, 1993,12:1677-1688. |
[22] | Boissiere L, Perrin G, Rigal J, et al. Lumbar-sacral fusion by a combined approach using interbody peek cage and posterior pedicle-screw fixation: clinical and radiological results from a prospective study[J]. Orthopaedics & Traumatology: Surgery & Research, 2013,99(8): 945-951. |
[23] | Bylskiaustrow D I, Wall E J, Rupert M P, et al. Growth plate forces in the adolescent human knee: a radiographic and mechanical study of epiphyseal staples[J]. Journal of Pediatric Orthopaedics, 2001,21(6): 817-823. |
[24] | Cho J H, Hwang C J, Kim H, et al. Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion[J]. Journal of Orthopaedic Science, 2018,23(6): 870-877. |
[25] | Bylskiaustrow D I, Glos D L, Wall E J, et al. Scoliosis vertebral growth plate histomorphometry: comparisons to controls, growth rates, and compressive stresses[J]. Journal of Orthopaedic Research, 2018, 36(9): 2450-2459. |
[1] | Ming LIU, Peng-fei WANG, Hong GUAN, Hui MA. Sensitivity Analysis of Deep Groove Ball Bearings with Coupling Misalignment [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 83-91. |
[2] | Zhi-qiang WANG, Zhen-yu LEI. Effects of Surface Periodic Roughness on Contact Stick-Slip Behaviors [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 76-82. |
[3] | Chen-wei TANG, Jian-lei LI, Hong-liang YAO, Ru-yu JIA. Design and Experimental Verification of Small-Scale Magnetic Adsorption Wall-Climbing Robots [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 68-75. |
[4] | Zhong LUO, Yong-heng LUO, Xin XIONG, Fa-yong WU. Analysis of Influence of Assembly Process Parameters on Mechanical Properties of Bolted Joint with Spigots [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1268-1276. |
[5] | Lian-jie MA, Li-ye SUN, Zhe QIU, Hong-shuang LI. Grinding Force Modeling of Two-Dimensional Ultrasonic Vibration Assisted Grinding [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1135-1142. |
[6] | Zhen-yu YANG, Ping ZOU, Liang ZHOU, An-qi WANG. Material Removal Mechanism During Ultrasonic Vibration Assisted Grinding AISI 304 with Single CBN Grain [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1011-1019. |
[7] | Jian-lei LI, Chen-wei TANG, Xi PENG, Hong-liang YAO. Design and Experiment of a Vibration-Driven Wall-Climbing Robot for Iron Surface Inspection [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 690-696. |
[8] | Da-yong GAO, Jian-yong LIN, Ya-ting TIAN, Hong-liang YAO. Mechanism and Efficiency of Combined Longitudinal-Torsional Vibration-Assisted Rock Drilling [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 555-563. |
[9] | Cong-yi ZHA, Zhi-li SUN, Qin LIU, Peng-fei DONG. Reliability Sensitivity Analysis of Pressure Fluctuations for Direct-Acting Relief Valves [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1744-1750. |
[10] | Long AN, Lin HAN, Zhi WANG, Xing SUN. Research on Blasting Mechanism of “Pin”-Shaped Slotting Without Raise in Sublevel Stope [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1612-1620. |
[11] | Ru-yu JIA, Hong-liang YAO, Ya-qiang CHEN, Chen-wei TANG. Method for Vibration Suppressing of New Type of Slender Support Rods [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1425-1434. |
[12] | LIU Xiao-han, ZOU Ping, QU Yuan-hui, FANG Li-ting. Design of a Single Excitation Three-Dimensional Vibration Cutting Device for Improving 304 Stainless Steel Machined Surface [J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 816-823. |
[13] | DOU Jin-xin, YAO Hong-liang, CAO Yan-bo, GUO Yu-liang. Theoretical and Experimental Research of BNES in Torsional Vibration Suppression of Rotor Systems [J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 790-798. |
[14] | CHEN Xiao-zhe, LIU Jun-qi, ZHONG Shan, LI Ling-xuan. Sommerfeld Effect of Non-ideal Vibration System Driven by AC Motor [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 660-666. |
[15] | ZHU Qing-dong, CHEN Ya-qiang, WU Chao, YAO Hong-liang. Theoretical and Test Study of Inertial Capacitance Metamaterial Torsional Vibration Isolators [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 651-659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||