LIU Yue, GUO Hao, MA Yu-lin, GU Jin-tao. Effect of Temperature on Microstructure and Mechanical Properties of X12CrMoWVNbN10-1-1 Steel[J]. Journal of Northeastern University Natural Science, 2016, 37(7): 946-950.
[1]Thomson R C,Miller M K.The partitioning of substitutional solute elements during the tempering of martensite in Cr and Mo containing steels [J] .Applied Surface Science,1995,87/88:185-193. [2]杨钢,杨沐鑫,王昌,等.冷却速度对X12CrMoWVNbN10-1-1耐热钢的力学性能影响[J].钢铁研究学报,2011,28(3):17-21.(Yang Gang,Yang Mu-xin,Wang Chang,et al .The effect of cool speed on mechanical properties of X12CrMoWVNbN10-1-1 heat resistant steel [J].Journal of Iron and Steel Research,2011,28 (3):17-21.) [3]Chilukuru H,Durst K,Wadekar S,et al.Coarsening of precipitates and degradation of creep resistance in tempered martensitic steels [J].Materials Science and Engineering:A,2009,510/511:81-87. [4]Gtz G,Blum W.Influence of thermal history on precipitation of hardening phases in tempered martensitic 10%Cr-steel X12CrMoWVNbN 10-1-1[J].Materials Science and Engineering:A,2003,348(1):201-207. [5]Tao X G,Gu J F,Han L Z.Characterization of precipitates in X12CrMoWVNbN10-1-1 steel during heat treatment [J].Journal of Nuclear Materials,2014,452:557-564 [6]Janovec J,Svoboda M,Blach J.Evolution of secondary phases 12%Cr steel during quenching and tempering [J].Materials Science and Engineering:A,1998,249:184-189. [7]符长璞,憨勇.20CrlMoVNbNB钢回火过程的原子扩散控制[J].金属学报,1993,29(3):131-135.(Fu Chang-pu,Han Yong.Atomic diffusion of 20Cr1MoVNbNB steel during tempering [J].Acta Metallurgica Sinica,1993,29(3):131-135.) [8]Inoue A,Masumoto T.Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels [J].Metallurgical Transactions A,1980,11:739-747. [9]Godden M J,Beech J.The M2C to M6C transformation in steels containing molybdenum [J].ISIJ International,1970,208:168-73. [10]Thomson R C,Bhadeshia D H.Carbide precipitation in 12CrMoV power plant steel [J].Metallurgical Transactions A,1992,23:1171-1179.(上接第945页) [5]Reddy I S,Shevade S,Murty M N.A fast quasi-Newton method for semi-supervised SVM[J].Pattern Recognition,2011,44(10/11):2305-2313. [6]Zhong W,He J Y,Harrison R,et al.Clustering support vector machines for protein local structure prediction[J].Expert Systems with Applications,2007,32(2):518-526. [7]Tang Y C,Jin B,Zhang Y Q.Granular support vector machines with association rules mining for protein homology prediction[J].Artificial Intelligence in Medicine,2005,35(1):121-134. [8]Wang W J,Xu Z B.A heuristic training for support vector regression[J].Neurocomputing,2004,61(1/2/3/4):259-275. [9]Cheng S X,Shih F Y.An improved incremental training algorithm for support vector machines using active query[J].Pattern Recognition,2007,40(3):964-971. [10]郭虎升,王文剑.动态粒度支持向量回归机[J].软件学报,2013,24(11):2535-2547.(Guo Hu-sheng,Wang Wen-jian.Dynamical granular support vector regression machine[J].Journal of Software,2013,24(11):2535-2547.) [11]Collobert R,Bengio S.SVMTorch:support vector machines for large-scale regression problems[J].Journal of Machine Learning Research,2001,1(2):143-146. [12]王敏.基于神经网络的基金净值预测研究[D].天津:天津大学,2008.(Wang Min.Predicting research net value of fund based on neural network[D].Tianjin:Tianjin University,2008.)