Interpolation of Missing Physiological Data of ICU Patients Based on Deep Embedded Clustering
LI Jian-hua1, ZHU Ze-yang1, XU Li-sheng1,2, SUN Guo-zhe3
1. School of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; 2. Neusoft Research of Intelligent Healthcare Technology, Co.,Ltd., Shenyang 110167, China; 3. Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
LI Jian-hua, ZHU Ze-yang, XU Li-sheng, SUN Guo-zhe. Interpolation of Missing Physiological Data of ICU Patients Based on Deep Embedded Clustering[J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 639-645.
[1]Digiovine B,Chenoweth C,Watts C,et al.The attributable mortality and costs of primary nosocomial bloodstream infections in the intensive care unit[J].American Journal of Respiratory and Critical Care Medicine,1999,160(3):976-981. [2]侯明曙.重症监护病房的发展现状[J].现代医药卫生,1995(2):40.(Hou Ming-shu.Development status of intensive care unit [J].Modern Medicine and Health,1995(2):40.) [3]Idri A,Benhar H,Fernández-Alemán J L,et al.A systematic map of medical data preprocessing in knowledge discovery[J].Computer Methods and Programs Biomedicine,2018,162:69-85. [4]El-Rashidy N,EI-Sappagh S,Abuhmed T,et al.Intensive care unit mortality prediction:an improved patient-specific stacking ensemble model[J].IEEE Access,2020,8:133541-133564. [5]Macas M,Kuzilek J,Odstrcilik T,et al.Linear Bayes classification for mortality prediction[C]// 2012 Computing in Cardiology.Krakow:IEEE,2012:473-476. [6]Kim S,Kim W,Park R W.A comparison of intensive care unit mortality prediction models through the use of data mining techniques[J].Healthcare Informatics Research,2011,17(4):232-243. [7]Liu J,Chen X,Fang Z,et al.ICU mortality prediction using modified cost-sensitive PCA and chaos PSO[C]// 2017 IEEE the 19th International Conference on e-Health Networking,Applications and Services(Healthcom).Dalian:IEEE,2017:1-6. [8]Johnson A E,Pollard T J,Shen L,et al.MIMIC-III,a freely accessible critical care database[J].Scientific Data,2016,3:160035. [9]Pickering B W,Gajic O,Ahmed A,et al.Data utilization for medical decision making at the time of patient admission to ICU[J].Critical Care Medicine,2013,41(6):1502-1510. [10]Peng X,Feng J,Zhou J T,et al.Deep subspace clustering[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(12):5509-5521. [11]Vincent P,Larochelle H,Bengio Y,et al.Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning.Helsinki,2008:1096-1103. [12]Yang B,Fu X,Sidiropoulos N D,et al.Towards k-means-friendly spaces:simultaneous deep learning and clustering[C]//Proceedings of the 34th International Conference on Machine Learning.Sydney,2017:3861-3870. [13]Masci J,Meier U,Ciresan D,et al.Stacked convolutional auto-encoders for hierarchical feature extraction[C]//Proceedings of the 21th International Conference on Artificial Neural Networks.Espoo,2011:52-59. [14]Jain A K.Data clustering:50 years beyond k-means[J].Pattern Recognition Letters,2010,31(8):651-666. [15]Dasuki Y D,Sheng O C,Hee L M,et al.A hybrid k-means-GMM machine learning technique for turbomachinery condition monitoring[C]//MATEC Web of Conferences.Sabah,2019:06008. [16]Fred A L N,Jain A K.Combining multiple clusterings using evidence accumulation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(6):835-850.