JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism[J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268.
[1]钱宝鑫,肖志勇,宋威.改进的卷积神经网络在肺部图像上的分割应用[J].计算机科学与探索,2020,14(8):1358-1367.(Qian Bao-xin,Xiao Zhi-yong,Song Wei.An improved convolutional neural network for segmentation of lung images[J].Computer Science and Exploration,2020,14(8):1358-1367.) [2]Mansoor A,Bagci U,Foster B,et al.Segmentation and image analysis of abnormal lungs at CT:current approaces,challenges,and future trends[J].Radiographics,2015,35(4):1056-1076. [3]周娇,徐向民,吕华琳.基于医学图像分割的半自动ROI提取[J].电视技术,2007(2):78-80.(Zhou Jiao,Xu Xiang-min,Lyu Hua-lin.Semi-automatic ROI extraction based on medical image segmentation[J].Television Technology,2007(2):78-80.) [4]Hu S,Hoffman E A,Reinhardt J M.Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images[J].IEEE Transactions on Medical Imaging,2001,20(6):490-498. [5]Adams R,Bischof L.Seeded region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(6):641-647. [6]Xiao G,Yun X,Wu J M.A multi-cue mean-shift target tracking approach based on fuzzified region dynamic imagefusion[J].Science China (Information Sciences),2012,55(3):577-589. [7]Shelhamer E,Long J,Darrell T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [8]Ronneberger O,Fischer P,Brox T.U-Net:convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Munich,2015:234-241. [9]Zhou Z W,Siddiquee M M R,Tajbakhsh N,et al.UNet++:a nested U-net architecture for medical image segmentation[C]// 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Granada,2018:3-11. [10]Oktay O,Schlemper J,Folgoc L L,et al.Attention U-Net:learning where to look for the pancreas[EB/OL].[2018-05-20].https://arxiv.org/abs/1804.03999.pdf [11]Alom M Z,Hasan M,Yakopcic C,et al.Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[EB/OL].[2018-05-29].https://arxiv.org/vc/arxiv/papers/1802/1802.06955v4.pdf. [12]钟思华,郭兴明,郑伊能.改进U-Net 网络的肺结节分割方法[J].计算机工程与应用,2020,56(17):203-209.(Zhong Si-hua,Guo Xing-ming,Zheng Yi-neng.Improved segmentation method of pulmonary nodules in U-Net network[J].Computer Engineering and Applications,2020,56 (17):203-209.) [13]Zhao C,Xu Y,He Z,et al.Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images[J].Pattern Recognition,2021,119:108071. [14]Mu N,Wang H Y,Zhang Y,et al.Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images[J].Pattern Recognition,2021,120:108168. [15]Fan D P,Zhou T,Ji G P,et al.INF-Net:automatic COVID-19 lung infection segmentation from CT images[J].IEEE Transactions on Medical Imaging,2020,39(8):2626-2637. [16]Singh V K,Abdel-Nasser M,Pandey N,et al.LungINFseg:segmenting COVID-19 infected regions in lung CT images based on a receptive-field-aware deep learning framework[J].Diagnostics,2021,11(2):158-158. [17]Maninis K K,Caelles S,Pont-Tuset J,et al.Deep extreme cut:from extreme points to object segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:616-625. [18]Kitrungrotsakul T,Chen Q Q,Wu H T,et al.Attention-RefNet:interactive attention refinement network for infected area segmentation of COVID-19[J].IEEE Journal of Biomedical and Health Informatics,2021,25(7):2363-2373. [19]宋瑶,刘俊.改进U-Net的新冠肺炎图像分割方法[J].计算机工程与应用,2021,57(19):243-251.(Song Yao,Liu Jun.Improved COVID-19 image segmentation method based on U-Net[J].Computer Engineering and Applications,2021,57(19):243-251.) [20]施俊,汪琳琳,王珊珊,等.深度学习在医学影像中的应用综述[J].中国图象图形学报,2020,25(10):1953-1981.(Shi Jun,Wang Lin-lin,Wang Shan-shan,et al.A review of deep learning applications in medical imaging[J].Journal of Image and Graphics,2020,25(10):1953-1981.) [21]付顺兵,王朝斌,罗建,等.基于改进U-Net模型的脑肿瘤MR图像分割[J].西华师范大学学报(自然科学版),2021,42(2):202-208.(Fu Shun-bing,Wang Chao-bin,Luo Jian,et al.Brain tumor MR image segmentation based on improved U-NET model[J].Journal of China West Normal University,201,42(2):202-208.) [22]Hu J,Shen L,Albanie S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. [23]Szegedy C,Ioffe S,Vanhoucke V,et al.Inception-v4,inception-ResNet and the impact of connections on learning[C]// 31st AAAI Conference on Artificial Intelligence.San Francisco,2017:4278-4284. [24]张文秀,朱振才,张永合,等.基于残差块和注意力机制的细胞图像分割方法[J].光学学报,2020,40(17):76-83.(Zhang Wen-xiu,Zhu Zhen-cai,Zhang Yong-he,et al.Cell image segmentation method based on residual block and attention mechanism[J].Acta Optica Sinica,2020,40(17):76-83.) [25]易三莉,陈建亭,贺建峰.ASR-UNet:一种基于注意力机制改进的视网膜血管分割算法[J].山东大学学报(理学版),2021,56(9):13-20.(Yi San-li,Chen Jian-ting,He Jian-feng.ASR-UNet:an improved retinal vascular segmentation algorithm based on attention mechanism [J].Journal of Shandong University,2021,56(9):13-20.) [26]Chen L C,Papandreou G,Schroff F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].[2017-12-05].https://arxiv.org/pdf/1706.05587.pdf. [27]Liang J Y,Sun G L,Zhang K,et al.Mutual affine network for spatially variant kernel estimation in blind image super-resolution[C]// IEEE/CVF International Conference on Computer Vision.Montreal,2021:4076-4085. [28]Lin T Y,Dollar P,Girshick R,et al.Feature pyramid networks for object detection[EB/OL].[2017-04-19].https://arxiv.org/pdf/1612.03144.pdf. [29]Zhao H S,Shi J P,Qi X J,et al.Pyramid scene parsing network[C]// IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:6230-6239. [30]Liu S,Qi L,Qin H F,et al.Path aggregation network for instance segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:8759-8768.[31]Wang G T,Zuluaga M A,Li W Q,et al.DeepIGeoS:a deep interactive geodesic framework for medical image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(7):1559-1572.[32]Kitrungrotsakul T,Yutaro I,Lin L,et al.Interactive deep refinement network for medical image segmentation[EB/OL].[2020-06-27].https://arxiv.org/pdf/2006.15320v1.pdf.