Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (11): 1595-1603.DOI: 10.12068/j.issn.1005-3026.2024.11.010
• Mechanical Engineering • Previous Articles Next Articles
Bo HAO1,2, Xin-yan XU1(), Yu-xin ZHAO1, Jun-wei YAN1
Received:
2023-06-21
Online:
2024-11-15
Published:
2025-02-24
Contact:
Xin-yan XU
About author:
XU Xin-yan, E-mail: 1035011108@qq.comCLC Number:
Bo HAO, Xin-yan XU, Yu-xin ZHAO, Jun-wei YAN. Surface Defect Detection of Riveting Holes Based on Improved YOLOv8[J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1595-1603.
型号 | MV-EM510M |
---|---|
分辨率 | 2 456×2 058 |
外形尺寸/mm | 50×50×48 |
最大帧率/(帧 | 15 |
曝光方式 | 帧曝光 |
功耗/W | 2.5 |
Table 1 Parameters of the CCD camera
型号 | MV-EM510M |
---|---|
分辨率 | 2 456×2 058 |
外形尺寸/mm | 50×50×48 |
最大帧率/(帧 | 15 |
曝光方式 | 帧曝光 |
功耗/W | 2.5 |
型号 | BT-R23C144 |
---|---|
放大倍率 | 0.061 |
视场尺寸/mm | 144.3×108.2 |
光圈 | 8 |
远心度/(°) | <0.05 |
景深/mm | 90 |
畸变/% | <0.08 |
Table 2 Parameters of the telecentric lens
型号 | BT-R23C144 |
---|---|
放大倍率 | 0.061 |
视场尺寸/mm | 144.3×108.2 |
光圈 | 8 |
远心度/(°) | <0.05 |
景深/mm | 90 |
畸变/% | <0.08 |
模型 | 缺陷 | P | R | F1值 | AP_0.5 |
---|---|---|---|---|---|
本文模型 | 裂纹 | 0.919 | 0.938 | 0.928 | 0.912 |
凹陷 | 0.900 | 0.948 | 0.923 | 0.963 | |
毛刺 | 0.856 | 0.922 | 0.888 | 0.929 | |
划痕 | 0.890 | 0.759 | 0.819 | 0.869 | |
YOLOv8 模型 | 裂纹 | 0.791 | 0.812 | 0.801 | 0.723 |
凹陷 | 0.736 | 0.667 | 0.700 | 0.719 | |
毛刺 | 0.870 | 0.629 | 0.730 | 0.812 | |
划痕 | 0.575 | 0.487 | 0.527 | 0.453 |
Table 3 Test accuracy parameters of the two models
模型 | 缺陷 | P | R | F1值 | AP_0.5 |
---|---|---|---|---|---|
本文模型 | 裂纹 | 0.919 | 0.938 | 0.928 | 0.912 |
凹陷 | 0.900 | 0.948 | 0.923 | 0.963 | |
毛刺 | 0.856 | 0.922 | 0.888 | 0.929 | |
划痕 | 0.890 | 0.759 | 0.819 | 0.869 | |
YOLOv8 模型 | 裂纹 | 0.791 | 0.812 | 0.801 | 0.723 |
凹陷 | 0.736 | 0.667 | 0.700 | 0.719 | |
毛刺 | 0.870 | 0.629 | 0.730 | 0.812 | |
划痕 | 0.575 | 0.487 | 0.527 | 0.453 |
组别 | 模型 | P | R | mAP_0.5 | mAP_0.5∶0.95 | 帧率/(帧· |
---|---|---|---|---|---|---|
1 | YOLOv8 | 0.743 | 0.649 | 0.677 | 0.367 | 243.90 |
2 | YOLOv8+WIoU | 0.791 | 0.650 | 0.754 | 0.458 | 204.08 |
3 | YOLOv8+WIoU+SimAM | 0.790 | 0.681 | 0.806 | 0.476 | 178.57 |
4 | YOLOv8+WIoU+SimAM+DCN | 0.891 | 0.892 | 0.918 | 0.524 | 147.06 |
Table 4 Results of ablation experiments
组别 | 模型 | P | R | mAP_0.5 | mAP_0.5∶0.95 | 帧率/(帧· |
---|---|---|---|---|---|---|
1 | YOLOv8 | 0.743 | 0.649 | 0.677 | 0.367 | 243.90 |
2 | YOLOv8+WIoU | 0.791 | 0.650 | 0.754 | 0.458 | 204.08 |
3 | YOLOv8+WIoU+SimAM | 0.790 | 0.681 | 0.806 | 0.476 | 178.57 |
4 | YOLOv8+WIoU+SimAM+DCN | 0.891 | 0.892 | 0.918 | 0.524 | 147.06 |
1 | Wang J, Zhu C R, Yang Y P,et al.Effect of riveting displacement on the mechanical behavior of CFRP bolted joints with elliptical‑head non‑lug self‑locking rivet nut[J].International Journal of Advanced Manufacturing Technology,2023,125(5/6):2161-2182. |
2 | 吕帅帅,杨宇,王彬文,等.基于改进Mask-RCNN的飞行器结构裂纹自动检测方法[J].振动、测试与诊断,2021,41(3):487-494,620. |
Shuai‑shuai Lyu, Yang Yu, Wang Bin‑wen,et al.An automatic crack detection method for structure test based on improved Mask-RCNN[J].Journal of Vibration,Measurement & Diagnosis,2021,41(3):487-494,620. | |
3 | Liu Y X, Wu D B, Liang J W,et al.Aeroengine blade surface defect detection system based on improved faster RCNN[J].International Journal of Intelligent Systems,2023:1992415. |
4 | 潘睿志,林涛,李超,等.基于深度学习的多尺寸汽车轮辋焊缝检测与定位系统研究[J].光学精密工程,2023,31(8):1174-1187. |
Pan Rui‑zhi, Lin Tao, Li Chao,et al.Research on multi size automobile rim weld detection and positioning system based on depth learning[J].Optics and Precision Engineering,2023,31(8):1174-1187. | |
5 | Aboah A, Wang B, Bagci U,et al.Real‑time multi‑class helmet violation detection using few‑shot data sampling technique and YOLOv8[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Vancouver,2023:5350-5358. |
6 | Feng C J, Zhong Y J, Gao Y,et al.TOOD:task‑aligned one‑stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,2021:3490-3499. |
7 | Li X, Wang W H, Wu L J,et al.Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[J].ArXiv,2022:2006.04388. |
8 | Dai J F, Qi H Z, Xiong Y W,et al.Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice,2017:764-773. |
9 | Zhu X Z, Hu H, Lin S,et al.Deformable ConvNets V2:more deformable,better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,2019:9300-9308. |
10 | Hu J, Shen L, Albanie S,et al.Squeeze‑and‑excitation networks[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. |
11 | Woo S, Park J, Lee J Y,et al.CBAM:convolutional block attention module[C]//European Conference on Computer Vision.Cham:Springer,2018:3-19. |
12 | Park J, Woo S, Lee J Y,et al.BAM:bottleneck attention module[J].ArXiv,2022:1807.06514. |
13 | Yang L X, Zhang R Y, Li L D,et al.SimAM:a simple,parameter‑free attention module for convolutional neural networks[C]//International Conference on Machine Learning (ICML).San Diego,2021:1-12. |
14 | Tong Z J, Chen Y H, Xu Z W,et al.Wise-IoU:bounding box regression loss with dynamic focusing mechanism[J].ArXiv,2023:2301.10051. |
15 | Selvaraju R R, Cogswell M, Das A,et al.Grad-CAM:visual explanations from deep networks via gradient‑based localization[J].International Journal of Computer Vision,2020,128(2):336-359. |
[1] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
[2] | Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010. |
[3] | An-lin TIAN, Wei-min LEI, Peng ZHANG, Wei ZHANG. A Multi-scale Edge Detection Method Based on Encoder-Decoder [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 936-943. |
[4] | Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775. |
[5] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
[6] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
[7] | Zhi-jin ZHANG, He LI, Yu-shi HUANG, Wen-xue WANG. Application of Deep Residual Shrinkage Network in Rolling Bearing Fault Diagnosis [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1587-1594. |
[8] | Meng-yuan LIU, Zhao-xia WU, Jin-yang WANG, Guang-lei XIA. Air Permeability Prediction of Sinter Layer Based on TST-LSTM Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1379-1385. |
[9] | Ying SUN, Ya-ru ZHOU, Xue-ying ZHANG. Speech Emotion Recognition Fusing Functional Paralanguage Proportion Coefficient [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 40-48. |
[10] | JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268. |
[11] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
[12] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
[13] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
[14] | LIN Qing-yang, CHEN Xiao-fang, XIE Yong-fang. An Superheat Identification Method in Aluminium Electrolysis Based on Residual Convolutional Self-Attention Neural Network [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 8-17. |
[15] | LIU Yang, YAN Dong-mei, MENG Fan-wei. Improved Two-Branch Person Re-identification Algorithm Based on Transformer [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 26-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||