Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (12): 1673-1679.DOI: 10.12068/j.issn.1005-3026.2024.12.001
• Information & Control •
Peng SHAN, Lin ZHANG(), Hong-ming XIAO, Yu-liang ZHAO
Received:
2023-07-03
Online:
2024-12-10
Published:
2025-03-18
Contact:
Lin ZHANG
CLC Number:
Peng SHAN, Lin ZHANG, Hong-ming XIAO, Yu-liang ZHAO. CT Diagnosis Method for Coronavirus Pneumonia with Integrated Multi-scale Attention Mechanism[J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1673-1679.
模型 | 召回率 | 精确率 | F1得分 | AUC值 | 准确率 | 参数量 | FLOPS |
---|---|---|---|---|---|---|---|
VGG16 | 0.895 8 | 0.947 1 | 0.920 7 | 0.968 3 | 0.922 9 | 138.36×106 | 15.5×109 |
ResNet50 | 0.954 1 | 0.894 5 | 0.923 3 | 0.978 2 | 0.920 8 | 25.56×106 | 4.12×109 |
ResNet101 | 0.912 5 | 0.956 3 | 0.933 9 | 0.968 3 | 0.935 4 | 44.55×106 | 7.48×109 |
DenseNet169 | 0.945 8 | 0.953 7 | 0.949 7 | 0.985 3 | 0.950 0 | 14.15×106 | 3.42×109 |
DenseNet201 | 0.945 8 | 0.945 8 | 0.945 7 | 0.982 7 | 0.945 6 | 18.09×106 | 4.37×109 |
RMCNet | 0.962 5 | 0.946 7 | 0.954 5 | 0.981 4 | 0.954 1 | 12.24×106 | 1.82×109 |
Table 1 Comparison between RMCNet network and mainstream algorithms
模型 | 召回率 | 精确率 | F1得分 | AUC值 | 准确率 | 参数量 | FLOPS |
---|---|---|---|---|---|---|---|
VGG16 | 0.895 8 | 0.947 1 | 0.920 7 | 0.968 3 | 0.922 9 | 138.36×106 | 15.5×109 |
ResNet50 | 0.954 1 | 0.894 5 | 0.923 3 | 0.978 2 | 0.920 8 | 25.56×106 | 4.12×109 |
ResNet101 | 0.912 5 | 0.956 3 | 0.933 9 | 0.968 3 | 0.935 4 | 44.55×106 | 7.48×109 |
DenseNet169 | 0.945 8 | 0.953 7 | 0.949 7 | 0.985 3 | 0.950 0 | 14.15×106 | 3.42×109 |
DenseNet201 | 0.945 8 | 0.945 8 | 0.945 7 | 0.982 7 | 0.945 6 | 18.09×106 | 4.37×109 |
RMCNet | 0.962 5 | 0.946 7 | 0.954 5 | 0.981 4 | 0.954 1 | 12.24×106 | 1.82×109 |
模型 | 召回率 | 精确率 | F1得分 | AUC值 | 准确率 |
---|---|---|---|---|---|
ResNet18 | 0.904 1 | 0.919 4 | 0.911 7 | 0.958 1 | 0.912 5 |
ResNet18+MA | 0.950 0 | 0.890 6 | 0.919 3 | 0.957 7 | 0.916 6 |
ResNet18+CTFCL | 0.933 3 | 0.921 8 | 0.927 5 | 0.974 5 | 0.927 1 |
RMCNet | 0.962 5 | 0.946 7 | 0.954 5 | 0.981 4 | 0.954 1 |
Table 2 Comparison of RMCNet ablation experiment
模型 | 召回率 | 精确率 | F1得分 | AUC值 | 准确率 |
---|---|---|---|---|---|
ResNet18 | 0.904 1 | 0.919 4 | 0.911 7 | 0.958 1 | 0.912 5 |
ResNet18+MA | 0.950 0 | 0.890 6 | 0.919 3 | 0.957 7 | 0.916 6 |
ResNet18+CTFCL | 0.933 3 | 0.921 8 | 0.927 5 | 0.974 5 | 0.927 1 |
RMCNet | 0.962 5 | 0.946 7 | 0.954 5 | 0.981 4 | 0.954 1 |
1 | Freeman W M, Walker S J, Vrana K E.Quantitative RT-PCR:pitfalls and potential[J].Biotechniques,1999,26(1):112-125. |
2 | 叶端胜,华云松.基于深度学习的肺炎影像分割研究[J].软件工程与应用,2022(6):1490-1499. |
Ye Duan‑sheng, Hua Yun‑song.Research on pneumonia image segmentation based on deep learning[J].Software Engineering and Applications,2022(6):1490-1499. | |
3 | Khan A I, Shah J L, Bhat M M.CoroNet:a deep neural network for detection and diagnosis of COVID-19 from chest X‑ray images[J].Computer Methods and Programs in Biomedicine,2020,196:105581. |
4 | Chollet F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:1251-1258. |
5 | Wang S, Zha Y F, Li W M,et al.A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis[J].European Respiratory Journal,2020,56(2):2000775. |
6 | Huang G, Liu Z, Van Der Maaten L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:4700-4708. |
7 | Lin T Y, Dollár P, Girshick R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:2117-2125. |
8 | Wu Z F, Shen C H, Van Den Hengel A.Wider or deeper:revisiting the ResNet model for visual recognition[J].Pattern Recognition,2019,90:119-133. |
9 | Li L, Qin L X, Xu Z G,et al.Using artificial intelligence to detect COVID-19 and community‑acquired pneumonia based on pulmonary CT:evaluation of the diagnostic accuracy[J].Radiology,2020,296(2):65-71. |
10 | Lucas M, Lerma M, Furst J,et al.RSI-Grad-CAM:visual explanations from deep networks via Riemann‑Stieltjes integrated gradient‑based localization[C]// International Symposium on Visual Computing.Cham:Springer,2022:262-274. |
11 | Tiwari S, Jain A.Convolutional capsule network for COVID-19 detection using radiography images[J].International Journal of Imaging Systems and Technology,2021,31(2):525-539. |
12 | Quan H, Xu X S, Zheng T T,et al.DenseCapsNet:detection of COVID-19 from X‑ray images using a capsule neural network[J].Computers in Biology and Medicine,2021,133:104399. |
13 | Banerjee A, Bhattacharya R, Bhateja V,et al.COFE-Net:an ensemble strategy for computer‑aided detection for COVID-19[J].Measurement,2022,187:110289. |
14 | Xia X L, Xu C, Nan B.Inception-v3 for flower classification[C]//2017 2nd International Conference on Image,Vision and Computing (ICIVC).Chengdu,2017:783-787. |
15 | Ferreira C A, Melo T, Sousa P,et al.Classification of breast cancer histology images through transfer learning using a pre‑trained inception ResNet V2[C]// International Conference on Image Analysis and Recognition.Cham:Springer,2018:763-770. |
16 | Li J X, Wang Y Q, Wang S,et al.Multiscale attention guided network for COVID-19 diagnosis using chest X-ray images[J].IEEE Journal of Biomedical and Health Informatics,2021,25(5):1336-1346. |
17 | Fu J L, Zheng H L, Mei T.Look closer to see better:recurrent attention convolutional neural network for fine‑grained image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:4438-4446. |
18 | Srivastava N, Hinton G, Krizhevsky A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958. |
19 | Jaiswal A, Gianchandani N, Singh D,et al.Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning[J].Journal of Biomolecular Structure and Dynamics,2021,39(15):5682-5689. |
20 | Polsinelli M, Cinque L, Placidi G.A light CNN for detecting COVID-19 from CT scans of the chest[J].Pattern Recognition Letters,2020,140:95-100. |
21 | Lin T Y, Goyal P, Girshick R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:2980-2988. |
22 | Li Y S, Chen Y P, Dai X Y,et al.Micronet:improving image recognition with extremely low flops[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal,2021:468-477. |
23 | Hu J, Shen L, Sun G.Squeeze‑and‑excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:7132-7141. |
24 | Woo S, Park J, Lee J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:3-19. |
[1] | Yu HAN, Xiao-dong WANG, Peng-fei LI, Guang-li ZHANG. Influence of Shock Wave Structure on the Ejector’s Operating Characteristics [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1309-1316. |
[2] | Zhi-bin LIU, Jian-qiao ZHANG, Xiao-feng DU, Jia-teng GUO. Implicit 3D Integrated Modeling of Complex Geological Structures in Mining Areas [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1317-1325. |
[3] | Ya-chun MAO, Zhe-xi YANG, Wang CAO, QI Ji. Extraction of Road Point Cloud in Open Pit Based on Multi-feature Constraints [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1326-1333. |
[4] | Yu XIA, Jing LIU, Xu-wen HE, Hong-ying YANG. Removal Effect of Organics in Reverse Osmosis Concentrate of Municipal Wastewater by Ozone Catalytic Oxidation [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1342-1351. |
[5] | Dao-gang QU, Bo XU, Cong GAO. Impact of Product Sharing on Dual-Channel Supply Chain [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1352-1359. |
[6] | Chun-yu BAI, Zhi-min GUAN, Ying ZHAO, Jing-yang DONG. E-Closed-Loop Supply Chain Decision-Making Considering Government Regulation and Second-Hand Markets [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1360-1368. |
[7] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
[8] | Ji-hong LIU, Xi-xiong HUANG. Face Inpainting Model Based on Denoising Diffusion Probability Models [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1227-1234. |
[9] | Kuai-kuai GUO, Jian-zhong LI, Chang-sheng LIU. Optimization Study on Protrusion Length of Delivery Tube in EIGA Based on CFD [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1252-1257. |
[10] | Zhong LUO, Yong-heng LUO, Xin XIONG, Fa-yong WU. Analysis of Influence of Assembly Process Parameters on Mechanical Properties of Bolted Joint with Spigots [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1268-1276. |
[11] | Fang-ming LIU, Wei SUN. Dynamic Modeling and Stress Reduction Optimization of Series Pipelines Based on Pipe-Solid Element Coupling [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1277-1286. |
[12] | Bo HAO, Peng ZHANG, Zhi-ming ZHU. Parameter Analysis and Verification of Variable F-RD-Type Lattice Structure [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1294-1300. |
[13] | Xiao-ming CHEN, Mo SHEN, Sun LIU, Yong ZHAO. Regulation Method of Induced-Charge Electro-Osmosis Based on Superposition Effect of Dual Electric Fields [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1065-1072. |
[14] | Xin-ru SUN, Yue SUN, Fu-sheng YAN, Hui LIU. Numerical Simulation of Hydrogen and Methane/Hydrogen Combustion in Micro-burners [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1088-1095. |
[15] | Han-sheng SONG, Hui MA, Zi-meng LIU, Wen-kang HUANG. Meshing Characteristics Analysis of Spiral Bevel Gear Pairs with Different Crack Types [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1096-1106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||