
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (11): 30-36.DOI: 10.12068/j.issn.1005-3026.2025.20240225
• Information & Control • Previous Articles Next Articles
Yi-wen LIU1,2(
), Tao WEN2, Yuan-guo BI2, Hong-bo ZHU2,3
Received:2024-12-10
Online:2025-11-15
Published:2026-02-07
Contact:
Yi-wen LIU
CLC Number:
Yi-wen LIU, Tao WEN, Yuan-guo BI, Hong-bo ZHU. CT Image Quality Classification Based on Stacking Ensemble Learning[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 30-36.
| 符号 | 定义 |
|---|---|
| G | 无向图 |
| V | 图G中所有节点的集合 |
| E | 图G中所有边的集合 |
| km | 平均度 |
| C | 平均聚类系数 |
Table 1 Related symbols and their definitions
| 符号 | 定义 |
|---|---|
| G | 无向图 |
| V | 图G中所有节点的集合 |
| E | 图G中所有边的集合 |
| km | 平均度 |
| C | 平均聚类系数 |
| 数据集 | 总样本 | 正例 | 负例 |
|---|---|---|---|
| 训练集 | 8 546 | 1 763 | 6 783 |
| 验证集 | 950 | 196 | 754 |
| 测试集 | 1 056 | 218 | 838 |
Table 2 Information of dataset
| 数据集 | 总样本 | 正例 | 负例 |
|---|---|---|---|
| 训练集 | 8 546 | 1 763 | 6 783 |
| 验证集 | 950 | 196 | 754 |
| 测试集 | 1 056 | 218 | 838 |
| 模型 | 准确率 | 灵敏度 | 特异性 |
|---|---|---|---|
| RF | 93.2 | 85.8 | 95.1 |
| XGBoost | 94.1 | 88.5 | 95.6 |
| BPNN | 94.7 | 89.4 | 96.1 |
| Inception v3 | 97.0 | 92.2 | 98.2 |
Table 3 Comparison results of base classifier
| 模型 | 准确率 | 灵敏度 | 特异性 |
|---|---|---|---|
| RF | 93.2 | 85.8 | 95.1 |
| XGBoost | 94.1 | 88.5 | 95.6 |
| BPNN | 94.7 | 89.4 | 96.1 |
| Inception v3 | 97.0 | 92.2 | 98.2 |
| 模型 | 准确率 | 灵敏度 | 特异性 |
|---|---|---|---|
| Stacking集成模型 | 99.2 | 98.6 | 99.4 |
| BPNN+Inception v3 | 98.1 | 95.9 | 98.7 |
| Inception v3+RF+BPNN | 98.8 | 97.2 | 99.2 |
Table 4 Binary classification experiment results of
| 模型 | 准确率 | 灵敏度 | 特异性 |
|---|---|---|---|
| Stacking集成模型 | 99.2 | 98.6 | 99.4 |
| BPNN+Inception v3 | 98.1 | 95.9 | 98.7 |
| Inception v3+RF+BPNN | 98.8 | 97.2 | 99.2 |
| 伪影程度 | 准确率 | 灵敏度 |
|---|---|---|
| 严重伪影 | 95.5 | 94.8 |
| 轻微伪影 | 94.8 | 94.4 |
| 无伪影 | 96.8 | 96.3 |
Table 5 Multi-classification experiment results of
| 伪影程度 | 准确率 | 灵敏度 |
|---|---|---|
| 严重伪影 | 95.5 | 94.8 |
| 轻微伪影 | 94.8 | 94.4 |
| 无伪影 | 96.8 | 96.3 |
| [1] | Ganaie M A, Hu M H, Malik A K, et al. Ensemble deep learning: a review[J]. Engineering Applications of Artificial Intelligence, 2022,115:105151. |
| [2] | Yu Z W, Wang D X, Zhao Z X, et al. Hybrid incremental ensemble learning for noisy real-world data classification[J]. IEEE Transactions on Cybernetics, 2019, 49(2): 403-416. |
| [3] | Dang T, Nguyen T T, McCall J,et al. Two-layer ensemble of deep learning models for medical image segmentation[J]. Cognitive Computation,2024,16(3): 1141-1160. |
| [4] | Ghamya K, Reddy M K. Internet of medical things-based ECG monitoring for arrhythmia classification utilizing metaheuristic optimization with ensemble deep learning model[J]. Cluster Computing, 2025,28(6) : 369. |
| [5] | Ganaie M A, Tanveer M. Ensemble deep random vector functional link network using privileged information for Alzheimer’s disease diagnosis[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21(4): 534-545. |
| [6] | Yang Y, Hu Y, Zhang X, et al. Two-stage selective ensemble of CNN via deep tree training for medical image classification[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9194-9207. |
| [7] | Mohebbian M R, Walia E, Habibullah M, et al. Classifying MRI motion severity using a stacked ensemble approach[J].Magnetic Resonance Imaging, 2021,75: 107-115. |
| [8] | Huertas-Tato J, Martín A, Fierrez J,et al. Fusing CNNs and statistical indicators to improve image classification[J].Information Fusion,2022,79:174-187. |
| [9] | Ding J Q, Song J, Li J W, et al. Two-stage deep neural network via ensemble learning for melanoma classification[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 758495. |
| [10] | Schapire R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197-227. |
| [11] | Boccaletti S, De Lellis P, del Genio C I, et al. The structure and dynamics of networks with higher order interactions[J]. Physics Reports, 2023, 1018: 1-64. |
| [12] | Yang K W, Li J C, Liu M D,et al. Complex systems and network science:a survey[J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 543-573. |
| [13] | Battiston F, Amico E, Barrat A, et al. The physics of higher-order interactions in complex systems[J]. Nature Physics, 2021, 17(10): 1093-1098. |
| [14] | Baggio G, Bassett D S, Pasqualetti F. Data-driven control of complex networks[J]. Nature Communications, 2021, 12: 1429. |
| [15] | Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. |
| [16] | Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. |
| [17] | Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97. |
| [18] | Hall-Beyer M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales[J]. International Journal of Remote Sensing, 2017, 38(5): 1312-1338. |
| [1] | KONG Zhi, SUN Qi, KOU Xiao-yu, WANG Li-fu. Research on the Importance of Network Nodes Based on Attribute Information and Structural Characteristics [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 625-631. |
| [2] | LUAN Feng, YANG Fan, CAI Rui-zhi, YANG Chen. Low Sampling Rate CT Reconstruction Based on Dual Dictionary Adaptive Learning Algorithm [J]. Journal of Northeastern University(Natural Science), 2022, 43(12): 1709-1716. |
| [3] | WANG Li-fu, LI Huan, ZHAO Guo-tao. Improved Load Re-allocation Strategy Based on Maximum Residual Capacity of Node [J]. Journal of Northeastern University Natural Science, 2020, 41(9): 1223-1230. |
| [4] | LI Yan-shuang, ZHUANG Xin-tian, WANG Jian, ZHANG Wei-ping. Analysis of Community Structures and Systemic Risks in China’s Stock Market Under Extreme Conditions [J]. Journal of Northeastern University Natural Science, 2020, 41(10): 1500-1508. |
| [5] | LIU Peng, DU Jia-zhi, LYU Wei-gang, DOU Ming-wu. A Modified KNN Classifier for Unbalanced Dataset [J]. Journal of Northeastern University Natural Science, 2019, 40(7): 932-936. |
| [6] | CHEN Dong-ming, WANG Yun-kai, HUANG Xin-yu, WANG Dong-qi. Community Detection Algorithm for Complex Networks Based on Group Density [J]. Journal of Northeastern University Natural Science, 2019, 40(2): 186-191. |
| [7] | CHEN Dong-ming, YAN Yan-bin, HUANG Xin-yu, WANG Dong-qi. Recommendation Algorithm Based on Community Detection in Bipartite Networks [J]. Journal of Northeastern University Natural Science, 2018, 39(8): 1103-1107. |
| [8] | LI Hong, SUN Hang, LIU Sheng-nan, PAN Shi-nong. Quantitative and Intelligent Diagnosis Method of Hip Dislocation Based on 3D-CT Images [J]. Journal of Northeastern University Natural Science, 2018, 39(2): 190-194. |
| [9] | DOU Sheng-chang, ZHAO Hai, ZHU Hong-bo, WANG Bin. Modify and Integrate Lung Segmentation Algorithm [J]. Journal of Northeastern University Natural Science, 2018, 39(11): 1562-1566. |
| [10] | XU Yan-jie, REN Tao, QI Yi. Topological Characteristic Analysis of Weighted Seismic Network Based on Space-Time Influence Domain [J]. Journal of Northeastern University Natural Science, 2018, 39(11): 1551-1555. |
| [11] | ZHAO Hai, LI Xiong-feng, ZHU Hong-bo, WANG Bin. Shape Modeling of Pulmonary Nodules Based on Fractal Dimension Characteristic [J]. Journal of Northeastern University Natural Science, 2018, 39(11): 1545-1551. |
| [12] | HE Xuan, WANG Lu-yang, ZHAO Hai, LIU Xiao. Space Scales of Earthquake Data Relation Networks [J]. Journal of Northeastern University Natural Science, 2018, 39(10): 1385-1389. |
| [13] | XU Jiu-qiang, SONG Jia, HE Xuan , ZHAO Hai. Comparison Analysis of Network Characteristics of OFC-based Simulated Earthquake Sequences [J]. Journal of Northeastern University Natural Science, 2017, 38(2): 205-209. |
| [14] | LI Jie, WANG Xing-wei, GUO Jing, YU Chao. Clique Percolation Based Local Fitness Method for User Clustering in Telecommunication Network [J]. Journal of Northeastern University Natural Science, 2017, 38(12): 1691-1696. |
| [15] | BAO Nan, CUI Zhi-ming, ZHUANG Jin-feng, KANG Yan. Automatic Segmentation of Fiducial Marker Based on Sequence Characteristics [J]. Journal of Northeastern University Natural Science, 2016, 37(12): 1705-1709. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||