Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (3): 20-27.DOI: 10.12068/j.issn.1005-3026.2025.20239058
• Information & Control • Previous Articles Next Articles
Na WANG1,2(), Yue-lei CUI1, Liang LUO1, Zi-cong WANG1
Received:
2023-10-11
Online:
2025-03-15
Published:
2025-05-29
Contact:
Na WANG
About author:
WANG Na E-mail: wangna@tiangong.edu.cn
CLC Number:
Na WANG, Yue-lei CUI, Liang LUO, Zi-cong WANG. Fault Diagnosis Method for Rolling Bearings Based on WP-TRP[J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 20-27.
相邻分解层 | 数据/个 |
---|---|
第1层、第2层 | 224 |
第2层、第3层 | 486 |
第3层、第4层 | 290 |
Table 1 Level number of WPD and the corresponding
相邻分解层 | 数据/个 |
---|---|
第1层、第2层 | 224 |
第2层、第3层 | 486 |
第3层、第4层 | 290 |
序号 | 故障类型 | 故障直径/mm | 故障损伤位置 |
---|---|---|---|
1 2 3 4 5 6 7 8 9 10 | N B B B IR IR IR OR OR OR | — 0.18 0.36 0.54 0.18 0.36 0.54 0.18 0.36 0.54 | — 12 12 12 12 12 12 3 3 6 |
Table 2 Rolling bearing data parameters
序号 | 故障类型 | 故障直径/mm | 故障损伤位置 |
---|---|---|---|
1 2 3 4 5 6 7 8 9 10 | N B B B IR IR IR OR OR OR | — 0.18 0.36 0.54 0.18 0.36 0.54 0.18 0.36 0.54 | — 12 12 12 12 12 12 3 3 6 |
方法 | 训练 正确率/% | 测试 正确率/% | 运行 时间/s |
---|---|---|---|
RP-SVD-SVM | 73.00 | 70.70 | 112.78 |
TRP-SVD-SVM | 92.71 | 89.67 | 86.65 |
RQA-SVM[ | 97.71 | 94.00 | 91.91 |
TRP-CNN | 100.00 | 97.60 | 219.56 |
WP-TRP | 100.00 | 100.00 | 10.66 |
Table 3 Diagnostic performances among WP-TRP,
方法 | 训练 正确率/% | 测试 正确率/% | 运行 时间/s |
---|---|---|---|
RP-SVD-SVM | 73.00 | 70.70 | 112.78 |
TRP-SVD-SVM | 92.71 | 89.67 | 86.65 |
RQA-SVM[ | 97.71 | 94.00 | 91.91 |
TRP-CNN | 100.00 | 97.60 | 219.56 |
WP-TRP | 100.00 | 100.00 | 10.66 |
故障类型序号 | RP-SVD-SVM | TRP-SVD-SVM | RQA-SVM | TRP-CNN | WP-TRP |
---|---|---|---|---|---|
1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
2 | 63.6 | 100.0 | 88.9 | 100.0 | 100.0 |
3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
4 | 32.3 | 63.0 | 74.1 | 100.0 | 100.0 |
5 | 95.7 | 100.0 | 96.6 | 100.0 | 100.0 |
6 | 72.0 | 100.0 | 100.0 | 100.0 | 100.0 |
7 | 69.0 | 78.8 | 100.0 | 100.0 | 100.0 |
8 | 65.5 | 80.0 | 82.9 | 97.6 | 100.0 |
9 | 33.3 | 68.0 | 100.0 | 100.0 | 100.0 |
10 | 86.2 | 100.0 | 100.0 | 100.0 | 100.0 |
Table 4 Comparison of classification accuracy in different defaults among WP-TRP,SVM,
故障类型序号 | RP-SVD-SVM | TRP-SVD-SVM | RQA-SVM | TRP-CNN | WP-TRP |
---|---|---|---|---|---|
1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
2 | 63.6 | 100.0 | 88.9 | 100.0 | 100.0 |
3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
4 | 32.3 | 63.0 | 74.1 | 100.0 | 100.0 |
5 | 95.7 | 100.0 | 96.6 | 100.0 | 100.0 |
6 | 72.0 | 100.0 | 100.0 | 100.0 | 100.0 |
7 | 69.0 | 78.8 | 100.0 | 100.0 | 100.0 |
8 | 65.5 | 80.0 | 82.9 | 97.6 | 100.0 |
9 | 33.3 | 68.0 | 100.0 | 100.0 | 100.0 |
10 | 86.2 | 100.0 | 100.0 | 100.0 | 100.0 |
1 | 侯东晓, 穆金涛, 方成, 等. 基于GADF与引入迁移学习的ResNet34对变速轴承的故障诊断[J]. 东北大学学报(自然科学版), 2022, 43(3): 383-389. |
Hou Dong-xiao, Mu Jin-tao, Fang Cheng, et al. Fault diagnosis of variable speed bearings based on GADF and ResNet34 introduced transfer learning[J]. Journal of Northeastern University (Natural Science), 2022, 43(3): 383-389. | |
2 | Yan R Q, Shang Z G, Xu H, et al. Wavelet transform for rotary machine fault diagnosis:10 years revisited[J]. Mechanical Systems and Signal Processing, 2023, 200(5): 110545. |
3 | Sun Y J, Li S H, Wang X H. Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image[J]. Measurement, 2021, 176(17): 109100. |
4 | Ye M Y, Yan X A, Chen N, et al. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network[J]. Applied Acoustics, 2023, 202: 109143. |
5 | Sun Y K, Cao Y, Li P. Fault diagnosis for train plug door using weighted fractional wavelet packet decomposition energy entropy[J]. Accident Analysis & Prevention, 2022, 166: 106549. |
6 | 周奇才, 沈鹤鸿, 赵炯, 等. 基于改进堆叠式循环神经网络的轴承故障诊断[J]. 同济大学学报(自然科学版), 2019, 47(10): 1500-1507. |
Zhou Qi-cai, Shen He-hong, Zhao Jiong, et al. Bearing fault diagnosis based on improved stacked recurrent neural network[J]. Journal of Tongji University (Natural Science), 2019, 47(10): 1500-1507. | |
7 | Liang H P, Cao J, Zhao X Q. Average descent rate singular value decomposition and two-dimensional residual neural network for fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3512616. |
8 | 张龙, 胡燕青, 赵丽娟, 等. 采用递归图编码技术与残差网络的滚动轴承故障诊断[J]. 西安交通大学学报, 2023, 57(2): 110-120. |
Zhang Long, Hu Yan-qing, Zhao Li-juan, et al. Fault diagnosis of rolling bearings using recurrence plot coding technique and residual network[J]. Journal of Xi’an Jiaotong University, 2023, 57(2): 110-120. | |
9 | 武明泽. 基于小波包分解和FPA-SVM的动车组轴箱轴承故障诊断研究[D]. 北京: 北京交通大学, 2021. |
Wu Ming-ze. Research on fault diagnosis of EMU axle box bearing based on wavelet packet decomposition and FPA-SVM[D]. Beijing: Beijing Jiaotong University, 2021. | |
10 | Han T, Liu C, Yang W G, et al. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions, 2020, 97: 269-281. |
11 | 刘涛, 梁成玉. 信息熵融合的PSO-SVC涡旋压缩机故障诊断[J]. 振动、测试与诊断, 2022, 42(1): 141-147,200. |
Liu Tao, Liang Cheng-yu. PSO-SVC fault diagnosis of scroll compressor based on information entropy fusion[J]. Journal of Vibration, Measurement & Diagnosis, 2022,42(1): 141-147,200. | |
12 | Kok T L, Aldrich C, Zabiri H, et al. Application of unthresholded recurrence plots and texture analysis for industrial loops with faulty valves[J]. Soft Computing, 2022, 26(19): 10477-10492. |
13 | 金江涛, 许子非, 李春, 等. 基于深度学习与混沌特征融合的滚动轴承故障诊断[J]. 控制理论与应用, 2022, 39(1): 109-116. |
Jin Jiang-tao, Xu Zi-fei, Li Chun, et al. Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion[J]. Control Theory & Applications, 2022, 39(1): 109-116. | |
14 | Cui L L, Liu Y H, Zhao D Z. Adaptive singular value decomposition for bearing fault diagnosis under strong noise interference[J]. Measurement Science and Technology, 2022, 33(9): 095002. |
15 | 郭明军, 李伟光, 杨期江, 等. 深度卷积神经网络在滑动轴承转子轴心轨迹识别中的应用[J]. 振动与冲击, 2021, 40(3): 233-239, 283. |
Guo Ming-jun, Li Wei-guang, Yang Qi-jiang,et al. Application of deep convolution neural network in identification of journal bearing rotor center orbit[J]. Journal of Vibration and Shock, 2021, 40(3): 233-239, 283. | |
16 | Wang Z Y, Yao L G, Chen G, et al. Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals[J]. ISA Transactions, 2021, 114: 470-484. |
17 | Faramarzi A, Heidarinejad M, Mirjalili S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152(4): 113377. |
18 | 司莉, 毕贵红, 魏永刚, 等. 基于RQA与SVM的声发射信号检测识别方法[J]. 振动与冲击, 2016, 35(2): 97-103, 123. |
Si Li, Bi Gui-hong, Wei Yong-gang, et al. Detection and identification of acoustic emission signals based on recurrence quantification analysis and support vector machines[J]. Journal of Vibration and Shock, 2016, 35(2): 97-103, 123. |
[1] | Hong-wei WANG, Lei LI, Chen-yu LIU, Xun WANG. Steering Actuator Fault Diagnosis of Intelligent Vehicle Based on Variable Parameter Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 913-920. |
[2] | Yu-chuan FAN, Bo FAN, Zhuo CHEN, Xiao-shun ZHANG. A Method for Anomaly Detection and Fault Diagnosis of Elevator Door Machine [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 761-768. |
[3] | Zhi-jin ZHANG, He LI, Yu-shi HUANG, Wen-xue WANG. Application of Deep Residual Shrinkage Network in Rolling Bearing Fault Diagnosis [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1587-1594. |
[4] | WANG Hong-wei, ZHANG Hao-tian, HAN Jie, LIU Chen-yu. Sensor Fault Estimation of Uncertain Vehicle Electronic Stability Control System [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 1-8. |
[5] | WANG Na, LI Yang, PENG Kun. Method of Actuator Fault Diagnosis via Multiple Angles Feature Extraction [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1240-1249. |
[6] | HOU Dong-xiao, MU Jin-tao, FANG Cheng, SHI Pei-ming. Fault Diagnosis of Variable Speed Bearings Based on GADF and ResNet34 Introduced Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 383-389. |
[7] | REN Zhao-hui, YU Tian-zhuang, DING Dong, ZHOU Shi-hua. Fault Diagnosis Method of Rolling Bearing Based on VMD-DBN [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1105-1110. |
[8] | LUO Zhong, XU Di, LI Lei, MA Hui. Bearing Fault Detection Based on Improved CYCBD Method [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 673-678. |
[9] | WANG Xin-gang, WANG Chao, HAN Kai-zhong. Early Fault Diagnosis Method of Rolling Bearings Based on Optimization of VMD and MCKD [J]. Journal of Northeastern University(Natural Science), 2021, 42(3): 373-381. |
[10] | ZHANG Yong-chao, LI Qi, REN Zhao-hui, ZHOU Shi-hua. Cross-Domain Fault Diagnosis of Rolling Bearings Using Domain Adaptation with Classifier Discrepancy [J]. Journal of Northeastern University(Natural Science), 2021, 42(3): 367-372. |
[11] | ZHANG Zi-fan, LI Qiang, LIU Han-wen, DING Ran. Optimal Placement of Strain Sensors for Urban Rail Vehicles Based on Information Entropy [J]. Journal of Northeastern University Natural Science, 2020, 41(3): 367-374. |
[12] | LI Guo-jun, LI Yi-qing, QIU Yong. Modeling and Analysing Leakage of Heating Pipe Network in Park [J]. Journal of Northeastern University Natural Science, 2020, 41(10): 1402-1409. |
[13] | ZHAO Wen-dan, WANG Ding-wei. Information Entropy-Based Supply Chain Uncertainty Under Push/Pull Strategies [J]. Journal of Northeastern University Natural Science, 2019, 40(4): 457-461. |
[14] | XU Lin, ZHENG Xiao-tong, FU Bo, TIAN Ge. Fault Diagnosis Method of Motor Bearing Based on Improved GAN Algorithm [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1679-1684. |
[15] | HOU Yan-bin, CHEN Bing-jun, GAO Xian-wen. Fault Diagnosis of Sucker Rod Pumping Wells Based on GM-ELM [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1673-1678. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||