东北大学学报(社会科学版) ›› 2025, Vol. 27 ›› Issue (5): 117-125.DOI: 10.15936/j.cnki.1008-3758.2025.05.012

• 法学研究 • 上一篇    下一篇

人工智能医疗器械大数据清洗的法律规制路径

陈翎翔   

  1. 中国政法大学 比较法学研究院,北京 100088
  • 收稿日期:2024-08-10 出版日期:2025-09-25 发布日期:2025-10-16
  • 作者简介:陈翎翔,中国政法大学博士研究生。

Legal Regulatory Pathways for Big Data Cleansing in AI Medical Devices

Lingxiang CHEN   

  1. College of Comparative Law,China University of Political Science and Law,Beijing 100088,China
  • Received:2024-08-10 Online:2025-09-25 Published:2025-10-16

摘要:

数据是人工智能三要素之一,数据质量问题日益成为人工智能技术的研究热点。数据采集等环节的技术缺陷会导致数据集存有脏数据,有必要引入大数据清洗技术以降低人工智能算法偏差等风险。然而,不符合规范的大数据清洗可能会对数据质量产生负面影响。选取人工智能医疗器械应用场景,在技术与法律双视角下审视大数据清洗的规范问题与实践困境。进而运用比较法方法,基于欧盟《医疗器械法规》《人工智能法》等法律实践和中国国情,提出促进数据集质量技术标准与法律规制的互动融合,以人工智能立法为契机,明确大数据清洗义务规范,产品责任制度的介入与改良等法律规制路径。

关键词: 人工智能, 医疗器械, 数据质量, 大数据清洗, 法律规制

Abstract:

As one of the three core elements of AI, data quality has increasingly become a focal point in AI research. Technical defects in data collection and other processes often result in dirty data in the dataset, necessitating the application of big data cleansing techniques to mitigate risks such as biases in AI algorithms. However, non-compliant big data cleansing behaviors may have a negative impact on data quality. Focusing on AI medical devices, an interdisciplinary approach is employed to examine the normative challenges and practical dilemmas of big data cleansing from both technical and legal perspectives. Furthermore, comparative methods are applied, drawing on legal practices such as the European Union’s Medical Device Regulation (MDR) and Artificial Intelligence Act, while taking into account China’s national context. Such pathways for regulatory innovation are proposed, including promoting the integration and interaction between technical standards for dataset quality and legal regulations, clarifying obligations for big data cleansing within the framework of AI legislation, and improving the intervention and adaptation of product liability systems.

Key words: artificial intelligence(AI), medical device, data quality, big data cleansing, legal regulation

中图分类号: