| [1] |
Liao D, Zhu S P, Correia J A F O, et al. Recent advances on Notch effects in metal fatigue: a review[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(4): 637-659.
|
| [2] |
Witkin D B, Patel D N, Bean G E. Notched fatigue testing of Inconel 718 prepared by selective laser melting[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(1): 166-177.
|
| [3] |
Li Z L, Shi D Q, Li S L, et al. A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures[J]. International Journal of Fatigue, 2019, 126: 6-19.
|
| [4] |
Meng Q Y, Guo B, Zhao Q L, et al. Modelling of grinding mechanics: a review[J]. Chinese Journal of Aeronautics, 2023, 36(7): 25-39.
|
| [5] |
Zhang Y B, Li C H, Ji H J, et al. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 81-97.
|
| [6] |
Gao P E, Tian P E, Tang Z H, et al. Comprehensive review of simulation methods in grinding processes: models, mechanisms, applications, and future directions[J]. Journal of Metals, 2025,77(9): 1-18.
|
| [7] |
高腾,李长河,张彦彬,等.纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型[J].机械工程学报,2023,59(13):325-342.
|
|
Gao Teng, Li Chang-he, Zhang Yan-bin, et al. Mechanical behavior of material removal and predictive force model for CFRP grinding using nano reinforced biological lubricant[J]. Journal of Mechanical Engineering, 2023, 59(13): 325-342.
|
| [8] |
Yang S Y, Liang R J, Chen W F, et al. Modelling and experiment for grinding forces of gear form grinding considering complete tooth depth engagement[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(13): 1738-1750.
|
| [9] |
Azizi A, Mohamadyari M. Modeling and analysis of grinding forces based on the single grit scratch[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(5): 1223-1231.
|
| [10] |
Sun J, Wu Y H, Zhou P, et al. Simulation and experimental research on Si3N4 ceramic grinding based on different diamond grains[J]. Advances in Mechanical Engineering, 2017, 9(6): 168781401770559.
|
| [11] |
Ding H H, Han Y C, Zhou K, et al. Grinding force modeling and experimental verification of rail grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(8):1254-1264.
|
| [12] |
刘超杰. 钛基复合材料高速磨削加工磨削力仿真分析[J]. 机械制造与自动化, 2019, 48(2): 89-93.
|
|
Liu Chao-jie. Simulation analysis of grinding force in high speed grinding of titanium matrix composites [J]. Machine Building & Automation, 2019, 48(2): 89-93.
|
| [13] |
王子乐. 18CrNiMo7-6钢外圆磨削仿真与试验研究[D]. 郑州:郑州大学, 2021.
|
|
Wang Zi-le. Simulation and experimental research on cylindrical grinding of 18CrNiMo7-6 steel[D]. Zhengzhou: Zhengzhou University, 2021.
|
| [14] |
Fu P, Jiang C H, Ji V. Microstructural evolution and mechanical response of the surface of 18CrNiMo7-6 steel after multistep shot peening during annealing[J]. Materials Transactions, 2013, 54(12): 2180-2184.
|
| [15] |
张银霞,杨鑫,原少帅,等.18CrNiMo7-6钢高速外圆磨削的残余应力[J].中国机械工程,2021,32(5):540-546.
|
|
Zhang Yin-xia, Yang Xin, Yuan Shao-shuai, et al. Residual stress of high-speed cylindrical grinding of 18CrNiMo7-6 steel [J]. China Mechanical Engineering, 2021,32(5): 540-546.
|
| [16] |
Zhang Y X, Yuan S S, Yang X,et al.Dry hard turning versus grinding: the influence of machining-induced surface integrity on fatigue performance[J].Coatings, 2023, 13:809.
|
| [17] |
马少奇. 18CrNiMo7-6钢外圆磨削力及表面完整性研究[D]. 郑州:郑州大学,2021.
|
|
Ma Shao-qi. Research on grinding force and surface integrity of 18CrNiMo7-6 steel in cylindrical grind [D]. Zhengzhou: Zhengzhou University, 2021.
|
| [18] |
吴少洋. 18CrNiMo7-6合金钢外圆及缺口磨削仿真研究与试验验证[D]. 郑州:郑州大学,2022.
|
|
Wu Shao-yang. Simulation study and experimental verification of cylindrical and notch grinding of 18CrNiMo7-6 alloy steel [D]. Zhengzhou: Zhengzhou University, 2022.
|
| [19] |
Li X K, Wolf S, Zhi G, et al. The modelling and experimental verification of the grinding wheel topographical properties based on the ‘through-the-process’ method[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1): 649-659.
|
| [20] |
Li C S, Sun L, Yang S, et al. Three-dimensional characterization and modeling of diamond electroplated grinding wheels[J]. International Journal of Mechanical Sciences, 2018, 144: 553-563.
|
| [21] |
张银霞, 韩程宇, 杨鑫, 等. GCr15钢平面磨削力仿真分析与实验研究[J]. 表面技术, 2019, 48(10): 342-348.
|
|
Zhang Yin-xia, Han Cheng-yu, Yang Xin, et al. Simulation analysis and experimental research on surface grinding force of GCr15 steel[J]. Surface Technology, 2019, 48(10): 342-348.
|
| [22] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 超硬磨料 粒度检验: [S]. 北京:中国标准出版社,2016.
|
|
General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of the People’s Repubilc of China. Superabrasive—checking the grain size: [S]. Beijing: Standards Press of China,2016.
|
| [23] |
王栋, 王建军, 李宁. 外圆磨削18CrNiMo7-6表面完整性研究[J]. 重庆理工大学学报(自然科学版), 2020, 34(4): 76-86.
|
|
Wang Dong, Wang Jian-jun, Li Ning. Study on surface integrity of cylindrical grinding 18CrNiMo7-6[J]. Journal of Chongqing University of Technology (Natural Science), 2020,34(4): 76-86.
|
| [24] |
Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
|
| [25] |
Özel T. The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools and Manufacture, 2006, 46(5): 518-530.
|