Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (2): 244-251.DOI: 10.12068/j.issn.1005-3026.2024.02.012
• Resources & Civil Engineering • Previous Articles
Yong-tao GAO1, Qiang ZHU1, Shun-chuan WU1,2, Yong-bing WANG3
Received:
2023-03-03
Online:
2024-02-15
Published:
2024-05-14
CLC Number:
Yong-tao GAO, Qiang ZHU, Shun-chuan WU, Yong-bing WANG. A Study of Rockburst Prediction Method Based on D-S Evidence Theory[J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 244-251.
评价指标 | 无岩爆(Ⅰ) | 轻微岩爆(Ⅱ) | 中等岩爆(Ⅲ) | 强烈岩爆(Ⅳ) |
---|---|---|---|---|
0~24 | 24~60 | 60~126 | 126~200 | |
0~80 | 80~120 | 120~180 | 180~320 | |
0~5 | 5~7 | 7~9 | 9~14 | |
0~0.3 | 0.3~0.5 | 0.5~0.7 | 0.7~1 | |
40~55 | 26.7~40 | 14.5~26.7 | 0~14.5 | |
0~2 | 2~4 | 4~6 | 6~10 |
Table 1 Classification criteria for rockburst evaluation indicators
评价指标 | 无岩爆(Ⅰ) | 轻微岩爆(Ⅱ) | 中等岩爆(Ⅲ) | 强烈岩爆(Ⅳ) |
---|---|---|---|---|
0~24 | 24~60 | 60~126 | 126~200 | |
0~80 | 80~120 | 120~180 | 180~320 | |
0~5 | 5~7 | 7~9 | 9~14 | |
0~0.3 | 0.3~0.5 | 0.5~0.7 | 0.7~1 | |
40~55 | 26.7~40 | 14.5~26.7 | 0~14.5 | |
0~2 | 2~4 | 4~6 | 6~10 |
序号 | 岩爆烈度 | ||||||
---|---|---|---|---|---|---|---|
1 | 43.1 | 122 | 5.38 | 0.35 | 22.7 | 3.31 | Ⅱ |
2 | 87.5 | 121 | 8.73 | 0.72 | 13.9 | 9.05 | Ⅳ |
3 | 79.1 | 124 | 8.64 | 0.64 | 14.4 | 7.74 | Ⅳ |
4 | 56.2 | 119 | 7.21 | 0.47 | 16.5 | 5.52 | Ⅲ |
5 | 62.8 | 120 | 6.45 | 0.52 | 18.6 | 4.16 | Ⅲ |
Table 2 Rockburst actual data with true levels
序号 | 岩爆烈度 | ||||||
---|---|---|---|---|---|---|---|
1 | 43.1 | 122 | 5.38 | 0.35 | 22.7 | 3.31 | Ⅱ |
2 | 87.5 | 121 | 8.73 | 0.72 | 13.9 | 9.05 | Ⅳ |
3 | 79.1 | 124 | 8.64 | 0.64 | 14.4 | 7.74 | Ⅳ |
4 | 56.2 | 119 | 7.21 | 0.47 | 16.5 | 5.52 | Ⅲ |
5 | 62.8 | 120 | 6.45 | 0.52 | 18.6 | 4.16 | Ⅲ |
序号 | 指标 | BPA | ||||
---|---|---|---|---|---|---|
1 | 0.007 8 | 0.821 5 | 0.170 0 | 0.000 7 | 0.000 0 | |
0.047 9 | 0.380 8 | 0.481 6 | 0.089 7 | 0.000 0 | ||
0.334 1 | 0.642 1 | 0.008 4 | 0.015 5 | 0.000 0 | ||
0.254 1 | 0.732 5 | 0.013 0 | 0.000 5 | 0.000 0 | ||
0.000 4 | 0.148 6 | 0.809 7 | 0.041 2 | 0.000 0 | ||
0.022 1 | 0.833 3 | 0.123 0 | 0.021 6 | 0.000 0 | ||
2 | 0.000 0 | 0.011 4 | 0.935 4 | 0.053 2 | 0.000 0 | |
0.050 8 | 0.406 1 | 0.456 3 | 0.086 8 | 0.000 0 | ||
0.011 9 | 0.005 0 | 0.607 7 | 0.375 4 | 0.000 0 | ||
0.000 0 | 0.000 8 | 0.368 6 | 0.594 2 | 0.036 3 | ||
0.000 0 | 0.002 7 | 0.433 4 | 0.558 2 | 0.005 8 | ||
0.000 0 | 0.000 0 | 0.000 0 | 0.826 1 | 0.173 9 | ||
3 | 0.000 0 | 0.052 6 | 0.884 3 | 0.028 3 | 0.034 7 | |
0.042 1 | 0.330 1 | 0.532 1 | 0.095 7 | 0.000 0 | ||
0.013 0 | 0.006 8 | 0.638 1 | 0.342 2 | 0.000 0 | ||
0.000 5 | 0.015 8 | 0.764 2 | 0.219 5 | 0.000 0 | ||
0.000 0 | 0.003 6 | 0.487 8 | 0.508 6 | 0.000 0 | ||
0.000 0 | 0.000 0 | 0.005 5 | 0.988 4 | 0.006 1 | ||
4 | 0.000 1 | 0.604 1 | 0.392 7 | 0.003 1 | 0.000 0 | |
0.057 0 | 0.455 6 | 0.406 3 | 0.081 1 | 0.000 0 | ||
0.068 9 | 0.292 5 | 0.523 6 | 0.115 0 | 0.000 0 | ||
0.039 6 | 0.661 0 | 0.287 8 | 0.011 6 | 0.000 0 | ||
0.000 0 | 0.011 0 | 0.685 6 | 0.303 4 | 0.000 0 | ||
0.000 0 | 0.010 3 | 0.699 2 | 0.290 5 | 0.000 0 | ||
5 | 0.000 0 | 0.396 4 | 0.559 7 | 0.006 2 | 0.037 8 | |
0.053 9 | 0.431 1 | 0.431 1 | 0.083 9 | 0.000 0 | ||
0.134 5 | 0.659 5 | 0.150 2 | 0.055 8 | 0.000 0 | ||
0.013 9 | 0.347 4 | 0.604 9 | 0.033 8 | 0.000 0 | ||
0.000 0 | 0.028 9 | 0.811 2 | 0.159 9 | 0.000 0 | ||
0.000 9 | 0.362 4 | 0.564 6 | 0.072 1 | 0.000 0 |
Table 3 Basic probability assignment for rockburst cases
序号 | 指标 | BPA | ||||
---|---|---|---|---|---|---|
1 | 0.007 8 | 0.821 5 | 0.170 0 | 0.000 7 | 0.000 0 | |
0.047 9 | 0.380 8 | 0.481 6 | 0.089 7 | 0.000 0 | ||
0.334 1 | 0.642 1 | 0.008 4 | 0.015 5 | 0.000 0 | ||
0.254 1 | 0.732 5 | 0.013 0 | 0.000 5 | 0.000 0 | ||
0.000 4 | 0.148 6 | 0.809 7 | 0.041 2 | 0.000 0 | ||
0.022 1 | 0.833 3 | 0.123 0 | 0.021 6 | 0.000 0 | ||
2 | 0.000 0 | 0.011 4 | 0.935 4 | 0.053 2 | 0.000 0 | |
0.050 8 | 0.406 1 | 0.456 3 | 0.086 8 | 0.000 0 | ||
0.011 9 | 0.005 0 | 0.607 7 | 0.375 4 | 0.000 0 | ||
0.000 0 | 0.000 8 | 0.368 6 | 0.594 2 | 0.036 3 | ||
0.000 0 | 0.002 7 | 0.433 4 | 0.558 2 | 0.005 8 | ||
0.000 0 | 0.000 0 | 0.000 0 | 0.826 1 | 0.173 9 | ||
3 | 0.000 0 | 0.052 6 | 0.884 3 | 0.028 3 | 0.034 7 | |
0.042 1 | 0.330 1 | 0.532 1 | 0.095 7 | 0.000 0 | ||
0.013 0 | 0.006 8 | 0.638 1 | 0.342 2 | 0.000 0 | ||
0.000 5 | 0.015 8 | 0.764 2 | 0.219 5 | 0.000 0 | ||
0.000 0 | 0.003 6 | 0.487 8 | 0.508 6 | 0.000 0 | ||
0.000 0 | 0.000 0 | 0.005 5 | 0.988 4 | 0.006 1 | ||
4 | 0.000 1 | 0.604 1 | 0.392 7 | 0.003 1 | 0.000 0 | |
0.057 0 | 0.455 6 | 0.406 3 | 0.081 1 | 0.000 0 | ||
0.068 9 | 0.292 5 | 0.523 6 | 0.115 0 | 0.000 0 | ||
0.039 6 | 0.661 0 | 0.287 8 | 0.011 6 | 0.000 0 | ||
0.000 0 | 0.011 0 | 0.685 6 | 0.303 4 | 0.000 0 | ||
0.000 0 | 0.010 3 | 0.699 2 | 0.290 5 | 0.000 0 | ||
5 | 0.000 0 | 0.396 4 | 0.559 7 | 0.006 2 | 0.037 8 | |
0.053 9 | 0.431 1 | 0.431 1 | 0.083 9 | 0.000 0 | ||
0.134 5 | 0.659 5 | 0.150 2 | 0.055 8 | 0.000 0 | ||
0.013 9 | 0.347 4 | 0.604 9 | 0.033 8 | 0.000 0 | ||
0.000 0 | 0.028 9 | 0.811 2 | 0.159 9 | 0.000 0 | ||
0.000 9 | 0.362 4 | 0.564 6 | 0.072 1 | 0.000 0 |
序号 | 类1 | 类2 | 类3 |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 |
Table 4 Classification of evidence in rockburst cases
序号 | 类1 | 类2 | 类3 |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 |
序号 | |||||
---|---|---|---|---|---|
1 | 0.020 2 | 0.738 4 | 0.203 5 | 0.037 9 | 0.000 0 |
2 | 0.014 7 | 0.117 0 | 0.219 3 | 0.649 0 | 0.000 0 |
3 | 0.011 5 | 0.090 2 | 0.194 8 | 0.703 5 | 0.000 0 |
4 | 0.014 9 | 0.118 9 | 0.843 8 | 0.022 3 | 0.000 0 |
5 | 0.016 5 | 0.169 6 | 0.787 9 | 0.026 0 | 0.000 0 |
Table 5 Results of evidence fusion and rockburst prediction
序号 | |||||
---|---|---|---|---|---|
1 | 0.020 2 | 0.738 4 | 0.203 5 | 0.037 9 | 0.000 0 |
2 | 0.014 7 | 0.117 0 | 0.219 3 | 0.649 0 | 0.000 0 |
3 | 0.011 5 | 0.090 2 | 0.194 8 | 0.703 5 | 0.000 0 |
4 | 0.014 9 | 0.118 9 | 0.843 8 | 0.022 3 | 0.000 0 |
5 | 0.016 5 | 0.169 6 | 0.787 9 | 0.026 0 | 0.000 0 |
序号 | 本文方法 | ||||||
---|---|---|---|---|---|---|---|
1 | Ⅱ | Ⅲ | Ⅱ | Ⅱ | Ⅲ | Ⅱ | Ⅱ |
2 | Ⅲ | Ⅲ | Ⅲ | Ⅳ | Ⅳ | Ⅳ | Ⅳ |
3 | Ⅲ | Ⅲ | Ⅲ | Ⅲ | Ⅳ | Ⅳ | Ⅳ |
4 | Ⅱ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅲ |
5 | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅲ | Ⅲ |
Table 6 Comparison of results with empirical methods
序号 | 本文方法 | ||||||
---|---|---|---|---|---|---|---|
1 | Ⅱ | Ⅲ | Ⅱ | Ⅱ | Ⅲ | Ⅱ | Ⅱ |
2 | Ⅲ | Ⅲ | Ⅲ | Ⅳ | Ⅳ | Ⅳ | Ⅳ |
3 | Ⅲ | Ⅲ | Ⅲ | Ⅲ | Ⅳ | Ⅳ | Ⅳ |
4 | Ⅱ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅲ |
5 | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅲ | Ⅲ |
1 | 钱七虎.岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1):7-12. |
Qian Qi‐hu.Definition,mechanism,classification and quantitative forecast model for rockburst and pressure bump[J].Rock and Soil Mechanics,2014,35(1):7-12. | |
2 | Wang J A, Park H D.Comprehensive prediction of rockburst based on analysis of strain energy in rocks[J].Tunnelling and Underground Space Technology,2001,16(1):49-57. |
3 | Cai M F, Brown E T .Challenges in the mining and utilization of deep mineral resources[J].Engineering,2017,3(4):432-433. |
4 | Qiao C, Guo Y H, Li C H.Study on rock burst prediction of deep buried tunnel based on cusp catastrophe theory[J].Geotechnical and Geological Engineering,2021,39(1):1101-1115. |
5 | Askaripour M, Saeidi A, Rouleau A,et al.Rockburst in underground excavations:a review of mechanism,classification,and prediction methods[J].Underground Space,2022,7(4):577-607. |
6 | Zhou J, Li X B, Mitri H S.Evaluation method of rockburst:state‐of‐the‐art literature review[J].Tunnelling and Underground Space Technology,2018,81:632-659. |
7 | Gong F Q, Wang Y L, Luo S.Rockburst proneness criteria for rock materials:review and new insights[J].Journal of Central South University,2020,27(10):2793-2821. |
8 | Xu L, Gong F Q, Liu Z X.Experiments on rockburst proneness of pre‐heated granite at different temperatures:insights from energy storage,dissipation and surplus[J].Chinese Journal of Rock Mechanics and Engineering,2022,14(5):1343-1355. |
9 | Hoek E, Brown E T. Underground excavations in rock[M]. London: CRC Press, 1980. |
10 | 梁伟章,赵国彦.深部硬岩长短期岩爆风险评估研究综述[J].岩石力学与工程学报,2022,41(1):19-39. |
Liang Wei‐zhang, Zhao Guo‐yan.A review of long‐term and short‐term rockburst risk evaluations in deep hard rock [J].Chinese Journal of Rock Mechanics and Engineering,2022,41(1):19-39. | |
11 | Cai W, Dou L M, Zhang M,et al.A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic monitoring[J].Tunnelling and Underground Space Technology,2018,80:232-245. |
12 | 裴启涛,李海波,刘亚群,等.基于改进的灰评估模型在岩爆中的预测研究[J].岩石力学与工程学报,2013,32(10):2088-2093. |
Pei Qi‐tao, Li Hai‐bo, Liu Ya‐qun,et al.Rockburst prediction based on a modified grey evaluation model[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(10):2088-2093. | |
13 | Guo J, Zhang W X, Zhao Y.A multidimensional cloud model for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1199-1206. |
14 | Pu Y Y, Apel D B, Xu H W.Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J].Tunnelling and Underground Space Technology,2019,90:12-18. |
15 | Sun Y T, Li G C, Zhang J F,et al.Rockburst intensity evaluation by a novel systematic and evolved approach:machine learning booster and application[J].Bulletin of Engineering Geology and the Environment,2021,11:8385-8395. |
16 | 吴顺川,张晨曦,成子桥.基于PCA-PNN原理的岩爆烈度分级预测方法[J].煤炭学报,2019,44(9):2767-2776. |
Wu Shun‐chuan, Zhang Chen‐xi, Cheng Zi‐qiao.Prediction of intensity classification of rockburst based on PCA‐PNN principle[J].Journal of China Coal Society,2019,44(9):2767-2776. | |
17 | 贾义鹏,吕庆,尚岳全,等.基于证据理论的岩爆预测[J].岩土工程学报,2014,36(6):1079-1086. |
Jia Yi‐peng, Qing Lü, Shang Yue‐quan,et al.Rockburst prediction based on evidence theory[J].Chinese Journal of Geotechnical Engineering,2014,36(6):1079-1086. | |
18 | 汪明武,董昊,叶晖,等.基于联系云-证据理论的岩爆烈度预测模型[J].应用数学和力学,2018,39(9):1021-1029. |
Wang Ming‐wu, Dong Hao, Ye Hui,et al.A connection cloud‐evidence theory coupling model for prediction of rockburst intensity[J].Applied Mathematics and Mechanics,2018,39(9):1021-1029. | |
19 | Zhang L M, Ding L Y, Wu X G,et al.An improved Dempster‐Shafer approach to construction safety risk perception[J].Knowledge‐based Systems,2017,132:30-46. |
20 | 蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994. |
Cai Wen.Matter element model and its application[M].Beijing:Scientific and Technical Documentation Press,1994. | |
21 | 郭婧,耿海军,吴勇.基于菌群优化的K均值聚类算法研究[J].南京理工大学学报(自然科学版),2021,45(3):314-319. |
Guo Jing, Geng Hai‐jun, Wu Yong.K‐means clustering algorithm based on bacteria foraging optimization[J].Journal of Nanjing University of Science and Technology,2021,45(3):314-319. | |
22 | Si X F, Huang L Q, Li X B,et al.Mechanical properties and rockburst proneness of phyllite under uniaxial compression[J].Transactions of Nonferrous Metals Society of China,2021,31(12):3862-3878. |
23 | Zhai S B, Su G S, Yin S D,et al.Rockburst characteristics of several hard brittle rocks:a true triaxial experimental study[J].Journal of Rock Mechanics and Geotechnical Engineering,2020,12(2):279-296. |
24 | 魏新江,陈涛涛,王霄,等.岩爆灾害研究与进展[J].现代隧道技术,2020,57(2):1-12. |
Wei Xin‐jiang, Chen Tao‐tao, Wang Xiao,et al.Progress in research of the rockburst hazard[J].Modern Tunnelling Technology,2020,57(2):1-12. | |
25 | 郭志强.秦岭终南山特长公路隧道岩爆特征与施工对策[J].现代隧道技术,2003,40(6):58-62. |
Guo Zhi‐qiang. Rockbursts and countermeasures in Qinling Zhongnanshan highway tunnel[J].Modern Tunnelling Technology,2003,40(6):58-62. |
[1] | LIU Yong-sheng, CAI Shi-yang, CHEN Yi-xin, XU Zhi-bo. Point Cloud Denoising Algorithm Based on Hybrid Filtering and Improved Bilateral Filtering [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 682-688. |
[2] | JI Hong-guang, CHEN Dong-sheng, SU Xiao-bo, QUAN Dao-lu. Analysis of Elastic Modulus Variation and Energy Evolution of Granite Based on Triaxial Loading and Unloading Test [J]. Journal of Northeastern University(Natural Science), 2023, 44(3): 415-423. |
[3] | ZHA Cong-yi, SUN Zhi-li, PAN Chen-rong, WANG Jian. Parallel Adaptive Sampling Strategy for Structural Reliability Analysis [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 76-82. |
[4] | PENG Zhi-xiong, ZENG Ya-wu. Microcrack Propagation-Based Damage Mechanics Model of Rock [J]. Journal of Northeastern University(Natural Science), 2022, 43(12): 1784-1791. |
[5] | WANG Shu, REN Yu, GUAN Zhan-xu, WANG Jing. Multi-source Data Fusion Method Based on Difference Information [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1246-1253. |
[6] | ZHENG Yan, JIANG Yuan-xiang. Speaker Clustering Algorithm Based on Feature Fusion [J]. Journal of Northeastern University(Natural Science), 2021, 42(7): 952-959. |
[7] | WANG Shu-hong, ZHU Bao-qiang, WANG Peng-yu. Application of Simulated Annealing Clustering Algorithm in Grouping of Discontinuity Orientation [J]. Journal of Northeastern University Natural Science, 2020, 41(9): 1328-1333. |
[8] | LIU Xin, ZHANG Wei-jun, SHI Quan, ZHOU Le. Operation Parameters Optimization of Blast Furnaces Based on Data Mining and Cleaning [J]. Journal of Northeastern University Natural Science, 2020, 41(8): 1153-1160. |
[9] | XU Zhong-yin, LIU Shan-jun, WU Li-xin, CHE De-fu. Experimental Study on the Microwave Radiation of Stressed Rock Under Cold Sky Background [J]. Journal of Northeastern University Natural Science, 2020, 41(8): 1180-1187. |
[10] | LI Chen, ZHANG Jia-wei, ZHANG Hao, WANG Qian. Generative Adversarial Networks Based Pathological Images Classification of Poorly Differentiated Cervical Cancer [J]. Journal of Northeastern University Natural Science, 2020, 41(7): 1054-1061. |
[11] | HUANG Chuan, HU Ping, LIAN Jing. A Big Data Method to Rebuild 3D Road Map Based on Vehicle Data [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 771-777. |
[12] | YU Zhen-liang, SUN Zhi-li, ZHANG Yi-bo, WANG Jian. A Structural Reliability Analysis Method Based on Adaptive PC-Kriging Model [J]. Journal of Northeastern University Natural Science, 2020, 41(5): 667-672. |
[13] | GUAN Shou-an, LI Hao, JIN Chang-yu, LIU Dong. Numerical Simulation on Overlying Strata Movement Law in Underground Mining of Cuyu Gold Mine [J]. Journal of Northeastern University Natural Science, 2020, 41(3): 402-407. |
[14] | CAO Ru-nan, SUN Zhi-li, ZHANG Yi-bo, WANG Jian. Reliability Analysis Based on Active Learning for Complex Mechanical Structure [J]. Journal of Northeastern University Natural Science, 2020, 41(2): 223-228. |
[15] | ZHAI Ying-ying, ZUO Li, ZHANG En-de. Algorithm for Structure Design of RBF Neural Network Based on Parameter Optimization [J]. Journal of Northeastern University Natural Science, 2020, 41(2): 176-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||