东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (2): 295-300.DOI: 10.12068/j.issn.1005-3026.2019.02.027

• 管理科学 • 上一篇    下一篇

SVM财务欺诈识别模型

曹德芳, 刘柏池   

  1. (东北大学 工商管理学院, 辽宁 沈阳110169)
  • 收稿日期:2017-10-25 修回日期:2017-10-25 出版日期:2019-02-15 发布日期:2019-02-12
  • 通讯作者: 曹德芳
  • 作者简介:曹德芳(1962-),女,山东莒南人,东北大学副教授,博士.
  • 基金资助:
    国家自然科学基金资助项目(71771041); 辽宁省科技基金资助项目.

SVM Model for Financial Fraud Detection

CAO De-fang, LIU Bai-chi   

  1. School of Business Administration, Northeastern University, Shenyang 110169, China.
  • Received:2017-10-25 Revised:2017-10-25 Online:2019-02-15 Published:2019-02-12
  • Contact: CAO De-fang
  • About author:-
  • Supported by:
    -

摘要: 利用我国资本市场的面板数据,选取2006—2015年公布的财务报表欺诈公司作为样本公司,以1∶1比例配比非财务欺诈公司,对27个指标(包括财务指标和非财务指标)进行分析,然后通过独立性检验对指标进行降维处理,最终保留8个建模指标.分别利用网格搜索算法、遗传算法和粒子群算法进行支持向量机模型的参数寻优,基于上述不同算法建立了三个支持向量机财务欺诈识别模型.最后,比较三个模型的运行效果,结果表明,通过粒子群算法寻找最优参数效果最好,据此建立的支持向量机模型可以很好地识别出财务欺诈公司样本.

关键词: 参数寻优, 支持向量机, 财务欺诈, 识别模型, 遗传算法, 粒子群算法

Abstract: Based on the panel data of China’s capital market, the financial fraud companies from 2006 to 2015, together with the same number of non-fraud companies were selected as the research samples. Twenty-seven financial and non-financial indexes were analyzed, after which the dimension of the indexes was reduced through the test of independence and eight indexes were retained as the modeling parameters. The grid search algorithm, genetic algorithm and particle swarm optimization(PSO)were used respectively to optimize the parameters, and three support vector machine(SVM)models with the parameters optimized by the proposed methods were established respectively for financial fraud detection. The results showed that the SVM model with the parameters optimized by PSO has a higher detection rate than the other two models.

Key words: parameter optimization, support vector machine(SVM), financial fraud, detection model, genetic algorithm(GA), particle swarm optimization(PSO)

中图分类号: